Correlated spiking is often observed in cortical circuits, but its functional role is controversial. It is believed that correlations are a consequence of shared inputs between nearby neurons and could severely constrain information decoding. Here we show theoretically that recurrent neural networks can generate an asynchronous state characterized by arbitrarily low mean spiking correlations despite substantial amounts of shared input. In this state, spontaneous fluctuations in the activity of excitatory and inhibitory populations accurately track each other, generating negative correlations in synaptic currents which cancel the effect of shared input. Near-zero mean correlations were seen experimentally in recordings from rodent neocortex in vivo. Our results suggest a re-examination of the sources underlying observed correlations and their functional consequences for information processing.
Spike trains from cortical neurons show a high degree of irregularity, with coefficients of variation (CV) of their interspike interval (ISI) distribution close to or higher than one. It has been suggested that this irregularity might be a reflection of a particular dynamical state of the local cortical circuit in which excitation and inhibition balance each other. In this "balanced" state, the mean current to the neurons is below threshold, and firing is driven by current fluctuations, resulting in irregular Poisson-like spike trains. Recent data show that the degree of irregularity in neuronal spike trains recorded during the delay period of working memory experiments is the same for both low-activity states of a few Hz and for elevated, persistent activity states of a few tens of Hz. Since the difference between these persistent activity states cannot be due to external factors coming from sensory inputs, this suggests that the underlying network dynamics might support coexisting balanced states at different firing rates. We use mean field techniques to study the possible existence of multiple balanced steady states in recurrent networks of current-based leaky integrate-and-fire (LIF) neurons. To assess the degree of balance of a steady state, we extend existing mean-field theories so that not only the firing rate, but also the coefficient of variation of the interspike interval distribution of the neurons, are determined self-consistently. Depending on the connectivity parameters of the network, we find bistable solutions of different types. If the local recurrent connectivity is mainly excitatory, the two stable steady states differ mainly in the mean current to the neurons. In this case, the mean drive in the elevated persistent activity state is suprathreshold and typically characterized by low spiking irregularity. If the local recurrent excitatory and inhibitory drives are both large and nearly balanced, or even dominated by inhibition, two stable states coexist, both with subthreshold current drive. In this case, the spiking variability in both the resting state and the mnemonic persistent state is large, but the balance condition implies parameter fine-tuning. Since the degree of required fine-tuning increases with network size and, on the other hand, the size of the fluctuations in the afferent current to the cells increases for small networks, overall we find that fluctuation-driven persistent activity in the very simplified type of models we analyze is not a robust phenomenon. Possible implications of considering more realistic models are discussed.
The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys' decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choice.behaving monkeys | somatosensory cortex | dorsal premotor cortex | pattern discrimination | categorical code F rom the most stereotyped behavior of invertebrates to the most elaborate behavior of primates, a central issue in neurobiology is elucidating how sensory information is represented in neural circuits and how it is used to generate actions. In principle, this process can be understood as a chain of three basic neuronal operations. The representation of the physical/chemical attributes of the environment and the execution of motor commands can be regarded as the end points of this chain of neuronal operations. In the middle of this chain is a crucial processing step in which the sensory representations are analyzed and transformed in such a manner that the nervous system is able to choose the adequate motor action.We have investigated this chain of processes by analyzing the neuronal activity of parietal and frontal cortices in trained monkeys performing a vibrotactile frequency discrimination task (VFDT; reviewed in refs. 1-3). In this task, monkeys compared the frequencies of two vibratory stimuli applied sequentially to the skin of one fingertip and then used their free hand to push one of two response buttons to indicate whether the second stimulus frequency (f2) was lower or higher than the first stimulus frequency (f1). The VFDT, although apparently simple, is designed so that it can only be executed when a minimum number of neuronal operations or cognitive steps are performed: coding f1, holding f1 in working memory, comparing f2 with the memory trace of f1, and, finally, executing a motor response to indicate whether f2 > f1 or f2 < f1. Thus, the VFDT allowed us to investigate a wide range of essential neural processes during perceptual decision making (1-3). However, the VFDT poses a fundamental problem: What is the neural code(s) that an observer might use to decide whether f2 > f1 or f2 < f1?...
Under uncertainty, the brain uses previous knowledge to transform sensory inputs into the percepts on which decisions are based. When the uncertainty lies in the timing of sensory evidence, however, the mechanism underlying the use of previously acquired temporal information remains unknown. We study this issue in monkeys performing a detection task with variable stimulation times. We use the neural correlates of false alarms to infer the subject's response criterion and find that it modulates over the course of a trial. Analysis of premotor cortex activity shows that this modulation is represented by the dynamics of population responses. A trained recurrent network model reproduces the experimental findings and demonstrates a neural mechanism to benefit from temporal expectations in perceptual detection. Previous knowledge about the probability of stimulation over time can be intrinsically encoded in the neural population dynamics, allowing a flexible control of the response criterion over time.
During active states of the brain neurons process their afferent currents with an effective membrane time constant much shorter than its value at rest. This fact, together with the existence of several synaptic time scales, determines to which aspects of the input the neuron responds best. Here we present a solution to the response of a leaky integrate-and-fire neuron with synaptic filters when long synaptic times are present, and predict the firing rate for all values of the synaptic time constant. We also discuss under which conditions this neuron becomes a coincidence detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.