This workplace-delivered multicomponent intervention was successful at reducing workplace and overall daily sitting time in both the short term and the long term.
PA modifies the associations between sedentary behaviours and CVD and cancer mortality. These findings emphasise the importance of higher volumes of moderate and vigorous activity to reduce, or even eliminate these risks, especially for those who sit a lot in their daily lives.
The activPAL monitor, often worn 24 h d, provides accurate classification of sitting/reclining posture. Without validated automated methods, diaries-burdensome to participants and researchers-are commonly used to ensure measures of sedentary behaviour exclude sleep and monitor non-wear. We developed, for use with 24 h wear protocols in adults, an automated approach to classify activity bouts recorded in activPAL 'Events' files as 'sleep'/non-wear (or not) and on a valid day (or not). The approach excludes long periods without posture change/movement, adjacent low-active periods, and days with minimal movement and wear based on a simple algorithm. The algorithm was developed in one population (STAND study; overweight/obese adults 18-40 years) then evaluated in AusDiab 2011/12 participants (n = 741, 44% men, aged >35 years, mean ± SD 58.5 ± 10.4 years) who wore the activPAL3 (7 d, 24 h d protocol). Algorithm agreement with a monitor-corrected diary method (usual practice) was tested in terms of the classification of each second as waking wear (Kappa; κ) and the average daily waking wear time, on valid days. The algorithm showed 'almost perfect' agreement (κ > 0.8) for 88% of participants, with a median kappa of 0.94. Agreement varied significantly (p < 0.05, two-tailed) by age (worsens with age) but not by gender. On average, estimated wear time was approximately 0.5 h d higher than by the diary method, with 95% limits of agreement of approximately this amount ±2 h d. In free-living data from Australian adults, a simple algorithm developed in a different population showed 'almost perfect' agreement with the diary method for most individuals (88%). For several purposes (e.g. with wear standardisation), adopting a low burden, automated approach would be expected to have little impact on data quality. The accuracy for total waking wear time was less and algorithm thresholds may require adjustments for older populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.