We have compared dendritic cells (DC) isolated from mouse spleen, or generated in vitro from bone marrow (BM) precursors cultured in granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), for the ability to process and present soluble antigen and stimulate major histocompatibility complex (MHC) Class II-restricted T cells. DC from spleen or BM cultures were equally able to stimulate the in vitro proliferation of allogeneic T cells or of antigen-specific T-cell receptor (TCR)-transgenic T cells. Both DC populations also induced comparable levels of IL-2 secretion by a T-cell hybridoma. Therefore, splenic and BM-derived DC express comparable levels of (Antigen + MHC Class II) ligands and/or costimulatory molecules and have comparable ability to stimulate T-cell responses. When presentation of a native protein antigen, rather than peptide, was evaluated, BM-derived DC were at least 50 times better than splenic DC at stimulating the proliferation of TCR-transgenic T cells. The antigen processing ability of the two populations was similar only when splenic DC were used immediately ex vivo. Therefore, unlike spleen DC, BM-derived DC maintain the capacity to process protein antigen for MHC Class II presentation during in vitro culture. Due to these characteristics, BM-derived DC may represent a useful tool in immunotherapy studies, as they combine high T-cell stimulatory properties with the capacity to process and present native antigen.
Flaky skin (fsn) is an autosomal recessive mutation on mouse chromosome 17 that causes severe anaemia, forestomach papillomatosis and a papulosquamous skin disease that resembles psoriasis in humans. In the present paper, it is reported that fsn causes peripheral lymphadenopathy, CD4/CD8 imbalance and hyperresponsiveness to T cell growth factors. Peripheral lymph nodes (PLN) of adult mutant (fsn/fsn) mice were found to contain almost 10‐fold more leucocytes than PLN from phenotypically normal littermates (+/fsn or +/+, hereafter referred to as +/?). Analysis of PLN cells using mAbs and flow cytometry revealed that this predominantly lymphoid hyperplasia was characterized by approximately equivalent increases in the numbers of CD3+ T cells and CD19+ B cells. However, expansion within the T cell compartment was non‐random, because fsn/fsn PLN had a considerably reduced ratio of CD4+ to CD8+ T cells (1.08 ± 0.37) compared to +/? PLN (2.47 ± 0.44, P < 0.0001). In vitro assays of cellular proliferation in response to T and B cell growth factors showed that fsn/fsn PLN cells were hyperresponsive to IL‐2, IL‐4 and IL‐7 when compared with PLN cells from +/? mice. Studies using mesenteric lymph node and peripheral blood cells showed that hyperresponsive cells are widely distributed in fsn/fsn mice. Experiments in newborn mice showed that the lymphoid disturbances caused by fsn are established at least as early as 2 weeks of age, a time that precedes the onset of the earliest clinical skin lesions. These data implicate a role for the fsn gene product in regulating the size and content of the peripheral lymphoid compartment.
Lymphatic drainage of the peritoneal cavity has been investigated in anesthetized sheep. Studies involving intraperitoneal administration of a complex of Evans blue dye and bovine serum albumin demonstrated the existence of three anatomically distinct pathways. In the first pathway, dye is removed from the peritoneal cavity by diaphragmatic lymphatics that pass into caudal sternal lymph nodes. Efferent lymphatics from these nodes transport the material to cranial sternal lymph nodes. Efferent cranial sternal lymphatics then convey the material either directly or indirectly, via tracheal lymphatic trunks, to the right lymph duct. In the second pathway, the complex is transported from the peritoneal cavity by diaphragmatic lymphatics that pass into the caudal mediastinal lymph node. Efferent lymphatic ducts from this node transport the material to the thoracic duct. The third pathway appears to involve transport of the dye across the mesothelial lining of the abdominal viscera and removal from the interstitium by afferent visceral lymphatics. Material taken up in this manner is ultimately transported to the thoracic duct by efferent visceral lymphatics. Experiments involving measurements of lymphatic absorption of 125I-labeled human serum albumin from the peritoneal cavity indicated that, over the 6-h period studied, 4.55 +/- 1.20 and 1.43 +/- 0.56% of the injected tracer could be recovered in thoracic duct lymph and caudal mediastinal efferent lymph, respectively, and the sum of these values represented 26% of the recovered radioactivity. On the other hand, 16.95 +/- 6.93% of the injected radioactivity could be found in the blood over the same period.(ABSTRACT TRUNCATED AT 250 WORDS)
The thymus plays an essential role in the generation and selection of T cells and exports approximately 0.5-1% of thymocytes per day in young animals and considerably fewer in older animals. To date there have been no studies directly examining fetal thymic export in any species. Using the technique of intrathymic injection of fluorescein isothiocyanate, followed by an assay for green fluorescent cells in the periphery and for the expression of cell surface antigens on these cells, we have compared directly the export of T cells from the fetal and postnatal ovine thymus. While the thymus exports both alpha beta and gamma delta T cells, our results demonstrate that the proportion of thymic gamma delta T cells that are exported per day is much higher than that of thymic alpha beta T cells. Moreover, the export rate of gamma delta T cells increased from approximately 1 in every 60 gamma delta thymocytes per day emigrating from the fetal thymus to 1 in every 20 from the postnatal thymus. In addition, we identify a population of CD5+CD4-CD8-gamma delta-. T cells emigrating from the fetal thymus but greatly reduced among thymic emigrants after birth. These findings have several implications regarding the mechanisms and control of selection of both gamma delta and alpha beta T cells.
Lymphatic drainage of the peritoneal cavity may reduce ultrafiltration in continuous ambulatory peritoneal dialysis. We assessed lymphatic drainage of the peritoneal cavity in sheep under dialysis conditions by cannulation of the relevant lymphatic vessels and compared lymphatic drainage in anesthetized and conscious animals. Lymph was collected from the caudal mediastinal lymph node and the thoracic duct, both of which are involved in the lymphatic drainage of the ovine peritoneal cavity. Volumes of a hypertonic dialysis solution (50 ml/kg 4.25% Dianeal) containing 25 microCi 125I-human serum albumin were instilled into the peritoneal cavity, and lymph flows and the appearance of labeled protein in the lymphatic and vascular compartments were monitored for 6 h. Intraperitoneal pressures increased 4-5 cmH2O above resting levels after infusion of dialysate. On the basis of the appearance of tracer in the lymph, drainage of peritoneal fluid into the caudal lymphatic was calculated to be 3.09 +/- 0.69 and 14.14 +/- 2.86 ml/h in anesthetized and conscious sheep, respectively. Drainage of peritoneal fluid into the thoracic duct preparations was calculated to be 1.32 +/- 0.33 and 14.69 +/- 5.73 ml/h in anesthetized and conscious sheep, respectively. Significant radioactivity was found in the bloodstream, and at least a portion of this was likely contributed by the right lymph duct, which was not cannulated in our experiments.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.