This research article addresses an efficient separate and combined class of estimators for the population mean estimation based on stratified random sampling (StRS). The first order approximated expressions of bias and mean square error of the proposed separate and combined class of estimators are obtained. A comparative study is conducted to determine the efficiency conditions in which the suggested class of estimators outperforms the contemporary estimators. These efficiency conditions are examined through an extensive simulation study by employing a hypothetically drawn symmetrical and asymmetrical populations. The simulation results have shown that the suggested class of estimators is more effective than the other available estimators. In addition, an application of the proposed methods is also presented by examining a real data set.
A control chart is the most well-known statistical monitoring tecnique to address unfavourable process parameter (s) changes. Quality practitioners always desire a charting device that promptly identifies the undesired changes in the process. This study intends to design a sensitive homogeneously weighted moving average chart using two supplementary variables (hereafter, TAHWMA). The two supplementary variables are correlated with the study variable in the form of a regression estimator, which is an efficient and unbiased estimator for the process mean. The suggested TAHWMA charting structure is checked out and compared in terms of appearance and non-appearance of multicollinearity amidst the two additional variables. Average run length-related measures are taken as performance measures. It is observed that the proposed TAHWMA scheme performs effectively when the two supplementary variables have no collinearity. A comprehensive comparison between the proposed TAHWMA and existing charts is also carried out, showing the proposed’s supremacy over existing counterparts. For execution purposes, two illustrative examples, one belonging to carbon fibre manufacturing-related data and the other using a simulated dataset and where our simulated dataset belongs to symmetrical distribution, are also presented for the application of the recommended TAHWMA chart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.