The pathogenic mechanisms of these diseases must be well understood for the treatment of neurological disorders such as Huntington's disease. Huntington's Disease (HD), a dominant and neurodegenerative disease, is characterized by the CAG re-expansion that occurs in the gene encoding the polyglutamine-expanded mutant Huntingtin (mHTT) protein. Genome editing approaches include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats/Caspase 9 (CRISPR/Cas9) systems. CRISPR/Cas9 technology allows effective gene editing in different cell types and organisms. Through these systems are created isogenic control of human origin induced pluripotent stem cells (iPSCs). In human and mouse models, HD-iPSC lines can be continuously corrected using these systems. HD-iPSCs can be corrected through the CRISPR/Cas9 system and the cut-and-paste mechanism using isogenic control iPSCs. This mechanism is a piggyBac transposon-based selection system that can effectively switch between vectors and chromosomes. In studies conducted, it has been determined that in neural cells derived from HD-iPSC, there are isogenic controls as corrected lines recovered from phenotypic abnormalities and gene expression changes. It has been determined that trinucleotide repeat disorders occurring in HD can be cured by single-guide RNA (sgRNA) and normal exogenous DNA restoration, known as the single guideline RNA specific to Cas9. The purpose of this review in addition to give general information about HD, a neurodegenerative disorder is to explained the role of CRISPR/Cas9 system with iPSCs in HD treatment.
Parkinson's disease (PD) is a neurodegenerative disorder affecting the motor system and occurring in the central nervous system. One of the symptoms of PD is accumulation of Lewy bodies and Lewy neurites. The alpha-synuclein (SNCA) gene is part of the protein complex called Lewy body. The SNCA gene encoding a presynaptic protein product is thought to play a role in PD-related important pathways. It is suggested that there is a relationship between the risk of PD development and SNCA levels, and it is suggested that SNCA level is an important marker in PD diagnosis. Various polymorphisms have been identified in the 5′ and/or 3′ UTR regions of the SNCA gene, and as a result of these polymorphisms, changes occur in the binding of transcription factors. The identification of the roles of SNCA gene polymorphisms in PD development may enable the development of new methods for the treatment of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.