The International Automated Negotiating Agent Competition introduces a new challenge each year to facilitate the research on agent-based negotiation and provide a test benchmark. ANAC 2020 addressed the problem of designing effective agents that do not know their users' complete preferences in addition to their opponent's negotiation strategy. Accordingly, this paper presents the negotiation strategy of the winner agent called "AhBuNe Agent". The proposed heuristicbased bidding strategy checks whether it has sufficient orderings to reason about its complete preferences and accordingly decides whether to sacrifice some utility in return for preference elicitation. While making an offer, it uses the most-desired known outcome as a reference and modifies the content of the bid by adopting a concession-based strategy. By analyzing the content of the given ordered bids, the importance ranking of the issues is estimated. As our agent adopts a fixed time-based concession strategy and takes the estimated issue importance ranks into account, it determines to what extent the issues are to be modified. The evaluation results of the ANAC 2020 show that our agent beats the other participating agents in terms of the received individual score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.