Due to limited treatment options the prognosis of patients with advanced hepatocellular cancer (HCC) has remained poor. To investigate an alternative therapeutic approach, we examined the feasibility of radioiodine therapy of HCC following human sodium iodide symporter (NIS) gene transfer using a mouse a-fetoprotein (AFP) promoter construct to target NIS expression to HCC cells. For this purpose, the murine Hepa 1-6 and the human HepG2 hepatoma cell lines were stably transfected with NIS cDNA under the control of the tumor-specific AFP promoter. The stably transfected Hepa 1-6 cell line showed a 10-fold increase in iodide accumulation, while HepG2 cells accumulated 125 I approximately 60-fold. Tumor-specific NIS expression was confirmed on mRNA level by northern blot analysis, and on protein level by immunostaining, that revealed primarily membrane-associated NIS-specific immunoreactivity.In an in vitro clonogenic assay up to 78% of NIS-transfected Hepa 1-6 and 93% of HepG2 cells were killed by
We investigated the feasibility of using radioiodine therapy in colon carcinoma cells (HCT 116) following tumor-specific expression of the human sodium iodide symporter (hNIS) using the carcinoembryonic antigen (CEA) promoter. HCT 116 cells were stably transfected with an expression vector, in which hNIS cDNA has been coupled to a CEA promoter fragment. This promoter is responsible for tissue-specific expression of CEA in gastrointestinal tract epithelium, and has been shown to target therapeutic genes to colorectal cancer cells. Functional NIS expression was confirmed by iodide uptake assay, Western blot analysis, immunostaining and in vitro clonogenic assay. The stably transfected HCT 116 cells concentrated 125 I about 10-fold in vitro without evidence of iodide organification. In contrast, transfection of control cancer cells without CEA expression did not result in iodide accumulation. Western blot analysis using a hNISspecific antibody revealed a band of approximately 90 kDa.In addition, immunostaining of stably transfected HCT 116 cells revealed hNIS-specific membrane-associated immunoreactivity. In an in vitro clonogenic assay approximately 95% of stably transfected HCT 116 cells were killed by exposure to 131 I, while only about 5% of NIS-negative control cells were killed. Further, using an adenovirus carrying the NIS gene linked to the CEA promoter, high levels of tumorspecific radioiodide accumulation were induced in HCT 116 cells. In conclusion, a therapeutic effect of 131 I has been demonstrated in colon carcinoma cells following induction of tumor-specific iodide uptake activity by CEA promoterdirected NIS expression in vitro. This study demonstrates the potential of NIS as a therapeutic gene allowing radioiodine therapy of colon cancer following tumor-specific NIS gene transfer. Gene Therapy (2005) 12, 272-280.
Treatment with Dex in the presence of atRA significantly increases functional NIS expression levels in addition to inhibiting iodide efflux, resulting in an enhanced selective killing effect of 131-I in MCF-7 breast cancer cells.
A therapeutic effect of 131-I has been demonstrated in MTC cells after induction of tissue-specific iodide uptake activity by calcitonin promoter-directed hNIS expression. This study demonstrates the potential of NIS as a therapeutic gene, allowing radioiodine therapy of MTC after tissue-specific NIS gene transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.