Although the development of regulatory T cells (T(reg) cells) in the thymus is defined by expression of the lineage marker Foxp3, the precise function of Foxp3 in T(reg) cell lineage commitment is unknown. Here we examined T(reg) cell development and function in mice with a Foxp3 allele that directs expression of a nonfunctional fusion protein of Foxp3 and enhanced green fluorescent protein (Foxp3DeltaEGFP). Thymocyte development in Foxp3DeltaEGFP male mice and Foxp3DeltaEGFP/+ female mice recapitulated that of wild-type mice. Although mature EGFP(+) CD4(+) T cells from Foxp3DeltaEGFP mice lacked suppressor function, they maintained the characteristic T(reg) cell 'genetic signature' and failed to develop from EGFP(-) CD4(+) T cells when transferred into lymphopenic hosts, indicative of their common ontogeny with T(reg) cells. Our results indicate that T(reg) cell effector function but not lineage commitment requires the expression of functional Foxp3 protein.
The population dynamics that enable a small number of regulatory T (T(R)) cells to control the immune responses to foreign Ags by the much larger conventional T cell subset were investigated. During the primary immune response, the expansion and contraction of conventional and T(R) cells occurred in synchrony. Importantly, the relative accumulation of T(R) cells at peak response significantly exceeded that of conventional T cells, reflecting extensive cell division within the T(R) cell pool. Transfer of a polyclonal T(R) cell population before immunization antagonized both polyclonal and TCR transgenic responses, whereas blocking T(R) cell function enhanced those responses. These results define an inverse quantitative relationship between T(R) and conventional T cells that controls the magnitude of the primary immune response. The high frequency of dividing T(R) cells suggests degenerate TCR specificity enabling activation by a broad spectrum of Ags.
SUMMARY
The mammalian target of rapamycin complex 1 (mTORC1) is regulated, in part, by the endogenous inhibitor DEPTOR. However, the mechanism of DEPTOR regulation with regard to rapid mTORC1 activation remains unknown. We report that DEPTOR is rapidly and temporarily dissociated from mTORC1 upon mitogenic stimulation, suggesting a mechanism underlying acute mTORC1 activation. This mitogen-stimulated DEPTOR dissociation is blocked by inhibition or depletion of the mTORC1 regulator, phospholipase D (PLD), and recapitulated with the addition of the PLD product phosphatidic acid (PA). Our mass spectrometry analysis has independently identified DEPTOR as an mTOR binding partner dissociated by PA. Interestingly, only PA species with unsaturated fatty acid chains, such as those produced by PLD, are capable of displacing DEPTOR and activating mTORC1, with high affinity for the FRB domain of mTOR. Our findings reveal a novel mechanism of mTOR regulation and provide a molecular explanation for the exquisite specificity of PA function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.