The World Wide Web is a large, wealthy, and accessible information system whose users are increasing rapidly nowadays. To retrieve information from the web as per users’ requests, search engines are built to access web pages. As search engine systems play a significant role in cybernetics, telecommunication, and physics, many efforts were made to enhance their capacity.However, most of the data contained on the web are unmanaged, making it impossible to access the entire network at once by current search engine system mechanisms. Web Crawler, therefore, is a critical part of search engines to navigate and download full texts of the web pages. Web crawlers may also be applied to detect missing links and for community detection in complex networks and cybernetic systems. However, template-based crawling techniques could not handle the layout diversity of objects from web pages. In this paper, a web crawler module was designed and implemented, attempted to extract article-like contents from 495 websites. It uses a machine learning approach with visual cues, trivial HTML, and text-based features to filter out clutters. The outcomes are promising for extracting article-like contents from websites, contributing to the search engine systems development and future research gears towards proposing higher performance systems.
Due to the alarming rate of climate change, fuel consumption and emission estimates are critical in determining the effects of materials and stringent emission control strategies. In this research, an analytical and predictive study has been conducted using the Government of Canada dataset, containing 4973 light-duty vehicles observed from 2017 to 2021, delivering a comparative view of different brands and vehicle models by their fuel consumption and carbon dioxide emissions. Based on the findings of the statistical data analysis, this study makes evidence-based recommendations to both vehicle users and producers to reduce their environmental impacts. Additionally, Convolutional Neural Networks (CNN) and various regression models have been built to estimate fuel consumption and carbon dioxide emissions for future vehicle designs. This study reveals that the Univariate Polynomial Regression model is the best model for predictions from one vehicle feature input, with up to 98.6% accuracy. Multiple Linear Regression and Multivariate Polynomial Regression are good models for predictions from multiple vehicle feature inputs, with approximately 75% accuracy. Convolutional Neural Network is also a promising method for prediction because of its stable and high accuracy of around 70%. The results contribute to the quantifying process of energy cost and air pollution caused by transportation, followed by proposing relevant recommendations for both vehicle users and producers. Future research should aim towards developing higher performance models and larger datasets for building APIs and applications.
Art in general and fine arts, in particular, play a significant role in human life, entertaining and dispelling stress and motivating their creativeness in specific ways. Many well-known artists have left a rich treasure of paintings for humanity, preserving their exquisite talent and creativity through unique artistic styles. In recent years, a technique called ’style transfer’ allows computers to apply famous artistic styles into the style of a picture or photograph while retaining the shape of the image, creating superior visual experiences. The basic model of that process, named ’Neural Style Transfer,’ has been introduced promisingly by Leon A. Gatys; however, it contains several limitations on output quality and implementation time, making it challenging to apply in practice. Based on that basic model, an image transform network was proposed in this paper to generate higher-quality artwork and higher abilities to perform on a larger image amount. The proposed model significantly shortened the execution time and can be implemented in a real-time application, providing promising results and performance. The outcomes are auspicious and can be used as a referenced model in color grading or semantic image segmentation, and future research focuses on improving its applications.
Keyphrase extraction has recently become a foundation for developing digital library applications, especially in semantic information retrieval techniques. From that context, in this paper, a keyphrase extraction model was formulated in terms of Natural Language Processing, applied explicitly in extracting information and searching techniques in tourism. The proposed process includes collecting and processing data from tourism sources such as Tripadvisor.com, Agoda.com, and vietnam-guide.com. Then, the raw data was analyzed and pre-processed with labeling keyphrase and fed data forward to Pretrained BERT model and Bidirectional Long Short-Term Memory with Conditional Random Field. The model performed the combination of Bidirectional Long Short-Term Memory with Conditional Random Field in order to solve keyphrase extraction tasks. Furthermore, the model integrated the Elasticsearch technique to enhance performance and time of looking up tourism destinations' information. The outcome extracted key phrases produce high accuracy and can be applied for extraction problems and textual content summaries. Povzetek: Predstavljen je pristop na osnovi ključnih fraz za uporabo v turističnih sistemih.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.