Keyphrase extraction has recently become a foundation for developing digital library applications, especially in semantic information retrieval techniques. From that context, in this paper, a keyphrase extraction model was formulated in terms of Natural Language Processing, applied explicitly in extracting information and searching techniques in tourism. The proposed process includes collecting and processing data from tourism sources such as Tripadvisor.com, Agoda.com, and vietnam-guide.com. Then, the raw data was analyzed and pre-processed with labeling keyphrase and fed data forward to Pretrained BERT model and Bidirectional Long Short-Term Memory with Conditional Random Field. The model performed the combination of Bidirectional Long Short-Term Memory with Conditional Random Field in order to solve keyphrase extraction tasks. Furthermore, the model integrated the Elasticsearch technique to enhance performance and time of looking up tourism destinations' information. The outcome extracted key phrases produce high accuracy and can be applied for extraction problems and textual content summaries. Povzetek: Predstavljen je pristop na osnovi ključnih fraz za uporabo v turističnih sistemih.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.