Aim: Anoxic brain injury (ABI) due to non-fatal drowning may cause persistent vegetative state (VS) that is currently incurable. The aim of this paper is to present the safety and feasibility of autologous bone marrow-derived mononuclear cell (BMMNC) transplantation in five drowning children surviving in persistent VS. Methods: We used BMMNC as a novel candidate therapeutic tool in a pilot phase-I study for five patients affected by neurological sequelae after near-death drowning. Autologous BMMNCs were freshly isolated using Ficoll gradient centrifugation then infused intrathecally to five patients. The number of transplantation varied from two to four times depending on the motor function improvement of patient after transplantation. Clinical therapeutic effects were evaluated using gross motor function measure and muscle spasticity rating scales, cognitive assessments, and brain MRI before and after cell administrations. Results: Six months after BMMNC transplantation, no serious complications or adverse events were reported. All five patients displayed improvement across the major parameters of gross motor function, cognition, and muscle spasticity. Three patients displayed improved communication including the expression of words. In particular, one patient remarkably reduced cerebral atrophy, with nearly normal cerebral parenchyma after BMMNC transplantation. Conclusions: Autologous BMMNC transplantation for the treatment of children in persistent VS after drowning is safe, feasible, and can potentially improve motor function and cognition and reduce muscle spasticity. These results pave the way for a future phase II clinical trial to evaluate the efficacy of the therapy.
The aim of this study was to present primary outcomes of autologous bone marrow mononuclear cell (BMMNC) transplantation to improve neurological sequelae in four children with intracranial hemorrhage (ICH) incidence during the neonatal period. Methods: GMFM88 and modified Ashworth score were used to assess motor function and muscle spasticity before BMMNC transplantation and after transplantation. Brain MRI was performed to evaluate brain morphology before and after BMMNC transplantation. Bone marrow were harvested from anterior iliac crest puncture and BMMNCs were isolated using Ficoll gradient centrifugation. The microbiological testing, cell counting, and hematopoietic stem cell (hHSC CD34+ cell) analysis were performed, following which BMMNCs were infused intrathecally. Results: Improvement in motor function was observed in all patients after transplantation. In addition, muscle spasticity was reduced in all four patients. Conclusion: Autologous BMMNC transplantation may improve motor function and reduce muscle spasticity in children with ICH incidence during the neonatal period.
Background: This study aimed to evaluate the diagnostic function of 3-Tesla (T) magnetic resonance imaging (MRI) during the assessment of brachial plexus injury (BPI), in comparison with intraoperative findings. Methods: A retrospective study was performed on 60 patients (47 men and 13 women), who had clinical manifestations of BPI, underwent 3T MRI of the brachial plexus, and were surgically treated at the Viet Duc and Vinmec Times City hospitals, in Hanoi, Vietnam, from March 2016 to December 2019. Preganglionic and postganglionic lesion features were identified on MRI. The diagnostic function of MRI features for the determination of BPI was evaluated and correlated with intraoperative findings. Results: The root avulsion and pseudomeningocele preganglionic injuries were observed in 57% and 43% of MRIs, respectively, and were commonly observed at the C7 and C8 roots. Nerve disruption and never edema were observed in 47.56% and 33.53% of MRIs, respectively, and were commonly observed at the C5 and C6 roots. The sensitivity, specificity, accuracy, positive prognostic value, and negative prognostic value of 3T MRI were 64.12%, 92.90%, 80.33%, 87.50%, and 76.96%, respectively, for the diagnosis of total avulsion, and 68.52%, 83.33%, 80.67%, 47.44%, and 92.34%, respectively, for the diagnosis of nerve disruption. Conclusion: MRI offers valuable details regarding the location, morphology, and severity of both preganglionic and postganglionic injuries during the preoperative diagnosis of BPI. However, this modality played a moderate diagnostic role. Therefore, 3T MRI should be used as a supplemental evaluation, coupled with clinical tests and electromyography, to determine the most appropriate treatment strategies for BPI patients.
Castleman's disease (CD) or angiofollicular lymphoid hyperplasia is a rare disorder with unknown aetiology that can easily be misdiagnosed as lymphoma, neoplasm, or infection. Diagnosis is challenging due to its non-specific symptoms and radiologic signs as well as its rarity. We report a case of a middle-aged woman with a mass adjacent to the uterus that was accidentally detected by ultrasound; it was believed to be of ovarian origin. Subsequently, the patient underwent a successful tumorectomy. Pathological examination confirmed the hyaline–vascular type of CD in a pelvic location. This was a typical case of an asymptomatic unicentric and hyaline–vascular type of CD.
McCune-Albright syndrome (MAS), a rare genetic disorder, affects multiple organs and classically presents with the triad of polyostotic fibrous dysplasia (FD), skin hyperpigmentation (café-au-lait spots) and precocious puberty. Diagnosis occurs when patients manifest at least two of these three symptoms. We describe a 4-year-old girl who was admitted to our hospital due to recurrent vaginal bleeding, initially diagnosed as precocious puberty. On brain MRI, abnormalities in the maxillary and occipital bones were compatible with FD. Clinical examination after craniofacial bone lesions and clinical signs indicated MAS revealed abnormally pigmented macules on the neck and back, which were initially overlooked. No abnormal hormone tests were observed. Precocious puberty is the most common MAS-associated symptom that results in the admission to the hospital, whereas the clinical manifestation of FD in the first years of life is usually equivocal and probably has not been discovered by parents. Thus, comprehensive medical examinations are necessary to obtain a prompt and proper diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.