A geophysical survey was conducted in the Kelle-Bidjocka village, Messondo subdivision, in the Centre Region, Cameroon. The data acquisition was made by combining Schlumberger profiling and electrical soundings along six (06) profiles of 1500 m in length for a total of 64 geoelectrical stations' survey conducted through a variable mesh 100 m × 200 m, or 100 m × 300 m. The equipment used is the DC resistivimeter Syscal Junior 48 (Iris Instrument). Processing and modelling of field data are made by using the Res2Dinv, Qwseln and Surfer software. The investigation methods used are electrical resistivity (DC) and induced polarization (IP) methods. The analyses and interpretations have helped to highlight areas of weakness or conductive discontinuities (fractures, faults, shear zones, etc.) in Precambrian gneiss formations, sometimes undergoing weathering processes. They identify the weathering or mineralogical accumulation horizons, the most promising is a mineralization channel identified in the NE-SW direction. The highlighted mineralization is characterized by strong gradients of chargeability or polarization. Samples and other geological evidences observed in the area are used to associate the most polarizable structures with ferriferous formations. Weakly polarizable and particularly conductive backgrounds identified by the inverse pseudo-sections are thought to be sulphate minerals or groundwater targets for future hydrogeological studies.
New geological and structural facts have been identified under the auriferous lateritic cover in Garga Sarali, Ndokayo area. Data were collected using AMT receiver system with frequencies ranging from 20 Hz to 50000 Hz. It consists of 16 AMT stations along 03 profiles, over Pan-African formations of East Cameroon. The wide frequency range enabled us to probe deep into the subsurface to obtain necessary information. Using Imagem software, coherency of data has been evaluated and only the data with a coherency below or equal to 0.7 have been considered. Two programs were used to map the subsurface. The pseudosections were obtained using IPI2WIN-MT, while geoelectrical sections were obtained using Stratagem Resistivity Plotter. Analysis of the curves of dimensionality tests shows that there is not always a complete superposition between the two telluric directions, translating the fact that the variation of the resistivity is not 1D, but rather 2D or 3D. Major features of 2D resistivity model from the respective profiles were identified. These features include a set of lower resistive formations going from the surface to 1000 m depth, lying on a set of resistive formations that appears at the surface and below the lower resistive formations. However, a very conductive layer was observed in depth in the three profiles. These facts show that the study area is made up of mixture of both conductive and resistive materials, suggesting a prolongation of the overlap between the Congo Craton and the Pan-African in depth to the north and the location of the CC/Pan-African limit above 4 ∘ N parallel accordingly. Deeper electrical discontinuities, interpreted as faults following a NE-SW trend, were highlighted. All these new data suggest that the study area underwent an intense tectonic activity with ductile to brittle deformations due to the presence of the BOSZ.
The aim of this study is to investigate crustal structures from East Cameroon, using aeromagnetic data. The modeling of aeromagnetic data is conducted using the Oasis Montaj 8.0 software. The total magnetic intensity map reduced to the equator (RTE-TMI) shows important anomalies features, namely, the Northern East magnetic anomalies of high amplitude, the Southwest where very low values of the magnetic intensity were observed, and a corridor with negative values relatively high, separating the anomalies. The horizontal gradient map shows on the one hand brittle and folded structures carried out in the area of study and on the other hand various rectilinear, narrow, and short-wave anomalies that can be classified as a family of little faults. The maxima observed on the RTE-TMI maps are correlated to intrabasement contacts; and the map derived from Euler’s solutions permitted to evaluate the depth of the geological accidents observed from the other filters. This map also reveals new faults with a depth greater than 5000 m. The lineaments identified in the Southwestern part could be linked to the Pan-African orogeny and seem to correspond to deep-seated basement structures, which are referred to the tectonic boundary between Congo Craton and the Pan-African orogeny belt. A 23/4-D modeling confirmed the observations derived from the RTE-TMI and HGM maps analyses. It shows intrusive bodies composed of gneiss and porphyroid granite and some domes with their roof situated at various depths not exceeding 1800 m from the surface. The structural map of the study area shows the trending of the structural features observed, namely, NE-SW, NW-SE, ENE-WSW, and WNW-ESE, respectively, while the E-W and N-S are secondary orientation of the observed tectonic evidence. Moreover, circular anomalies observed over the area are assimilated to intrusions of high magnetic materials or to granitic domes.
Geophysical surveying is crucial in the investigation of mineral resources in poorly exposed areas such as SE-Cameroon, a region known for its gold mineral potential. In this paper, gravity survey is carried out in the Batouri area, SE-Cameroon based on land gravity data from the Centre-south Cameroon. Therefore, an analytical polynomial separation program, based on least-square fitting of a third-degree polynomial surface to the Bouguer anomaly map, was used to separate the regional/residual components in gravity data. This technique permitted to better understand the disposition of the deep and near surface structures responsible of the observed anomalies in the Batouri area. Spectral analysis and 2.5D modelling of two profiles P 1 (SW-NE) and P 2 (N-S) selected from the residual anomaly map provided depths to basement. These depths constrain the gravity models along the profiles, indicating a variable thickness of the sedimentary infill with an approximate anomaly of −33 mGal. The 2.5D model of the basement shows a gravity body, with a signature suggesting two close and similar masses, which characterize the quartzbearing formations associated here to granite and gneiss. Our work highlights a main heavy gravity: Gwé-Batouri anomaly, containing the major part of auriferous deposits located along the NE-SW direction. Further, three tectonic sub-basins bounded by normal faults have been highlighted at Guedal, Gwé, and Bélimban, in the south of Guedal-Bélimban depression.
The south-east of Cameroon encompasses a wide variety of geological structures among which we can cite the Congo Craton (CC), the Sanaga Fault (SF), the Yaoundé Domain, the Panafrican belt, the Protozoic series and the Dja complex. The presence of all these structures justifies the great tectonic activity to which this area was subject from the rupture of Pangea to the creation of the different plates that exist today. In this work, we will bring out a high-resolution structural map of the study area by applying the qualitative analysis of the phase filters on 200,900 points of gravimetric data obtained from the combination of the XGM2016 and ETOPO1 models. Then, with these same data, we will bring out another structural map with the maxima method called Multi-Scale Horizontal Derivative of Vertical Derivative (MSHDVD) which will be compared to the first in order to show the limits of the MSHDVD method. To do this, we will first use the extension method to highlight the map of residual anomalies, then a combination of derivative, gradient and phase filters to highlight the geological structures responsible for fracturing in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.