Copper nanowires have shown promise for use in next-generation conducting materials for transparent electrodes owing to their low sheet resistance, natural abundance, and high transmittance properties. Additionally, copper nanowires can be easily synthesized via low-cost solution-based processes. However, copper requires a uniform film to coat the nanowires on the substrate and removing film former residue in the post-treatment process remains a challenge. This lead to the high cost and complexity of fabricating transparent electrode. In this study, we demonstrate a simple, time-saving production method using a combination of laser irradiation and acid dipping to fabricate high-quality copper nanowire transparent electrodes. Preparation of electrodes was achieved by scanning pulsed laser on a copper nanowire film and then dipping in glacial acetic acid. The electrode exhibited excellent properties and the film former was totally erased from the electrode surface. Moreover, to demonstrate their capability, the as-fabricated electrodes were applied in touch-sensor fabrication.
Although stretchable electroluminescent (EL) devices have been the research hotspots for decades because of their enormous market value in lighting sources and displays, fabrication of the stretchable EL device through a simple, cost-effective, and scalable method still remains an open issue. Here, a novel all solution-processed method is developed to fabricate a high-performance alternative current electroluminescent (ACEL) device based on copper nanowires (Cu NWs). The Cu NW-based electrode exhibited a low resistance change of less than 10% after 1000 stretching cycles at a tensile strain of 30% and the resistance variation of the electrode in one stretching-releasing cycle was less than 1% at the 1000th. To substantiate suitability for the wearable application, the ACEL device was stretched at a tensile strain of 100% and it retained a luminance of 97.6 cd/m2. Furthermore, the device works well under different deformations such as bending, folding, rolling, and twisting. To the best of our knowledge, this is the first demonstration of Cu NWs applied in a stretchable ACEL, promising cost-effective electrode materials for various wearable electronics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.