Non-platinum electrodes for photoelectric devices are challenging and attractive to the scientific community. A thin film of molybdenum disulfide (MoS2) was prepared on substrates coated with fluorine-doped tin oxide (FTO) to substitute the platinum counter electrode (CE) for dye-sensitized solar cells (DSSCs). Herein, we synthesized layered and honeycomb-like MoS2 thin films via the cyclic voltammetry (CV) route. Thickness and morphology of the MoS2 thin films were controlled via the concentration of precursor solution. The obtained results showed that MoS2 thin films formed at a low precursor concentration had a layered morphology while a honeycomb-like MoS2 thin film was formed at a high precursor concentration. Both types of MoS2 thin film were composed of 1T and 2H structures and exhibited excellent electrocatalytic activity for the I3–/I− redox couple. DSSCs assembled using these MoS2 CEs showed a maximal power conversion efficiency of 7.33%. The short-circuit value reached 16.3 mA·cm−2, which was higher than that of a conventional Pt/FTO CE (15.3 mA·cm−2). This work reports for the first time the possibility to obtain a honeycomb-like MoS2 thin film morphology by the CV method and investigates the effect of film structure on the electrocatalytic activity and photovoltaic performance of CEs for DSSC application.
Activated carbon (AC) derived from coconut shells (Tra Bac Company, Vietnam) is a promising candidate material for the capacitance deionization (CDI) technology due to their low-cost, abundance and its high surface area. In our work, the composites AC/MCNTs electrodes were prepared using the polyvinyl alcohol (PVA) and glutaric anhydride (GA) as cross-linking binder. The morphological properties were investigated by scanning electron microscopy (SEM). The electrochemical properties were performed by electrochemical measurements such as: cyclic voltammetry (CV), cyclic charge – discharge (CDC). The composite electrode with 1% CNTs (wt.) showed encouragingly a specific capacitance of 94.0 F/g and a salt absorption capacity of 11.2 mg/g with stable performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.