Nitrogen-doped TiO2 nanotube arrays (N-TNAs) were successfully fabricated by a simple thermal annealing process in ambient N2 gas at 450 °C for 3 h. TNAs with modified morphologies were prepared by a two-step anodization using an aqueous NH4F/ethylene glycol solution. The N-doping concentration (0–9.47 at %) can be varied by controlling N2 gas flow rates between 0 and 500 cc/min during the annealing process. Photocatalytic performance of as-prepared TNAs and N-TNAs was studied by monitoring the methylene blue degradation under visible light (λ ≥ 400 nm) illumination at 120 mW·cm−2. N-TNAs exhibited appreciably enhanced photocatalytic activity as compared to TNAs. The reaction rate constant for N-TNAs (9.47 at % N) reached 0.26 h−1, which was a 125% improvement over that of TNAs (0.115 h−1). The significant enhanced photocatalytic activity of N-TNAs over TNAs is attributed to the synergistic effects of (1) a reduced band gap associated with the introduction of N-doping states to serve as carrier reservoir, and (2) a reduced electron‒hole recombination rate.
UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A) derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.
This review highlights recent advances in the utilization of natural materials (clay mineral and pumice)- and waste materials (ash and foundry sand)-based metal oxide nanocomposites for photodegradation of various pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.