During the past two decades, the use of probiotics as an alternative to the use of antibiotics has shown to be promising in aquaculture, particularly in fish and shellfish larviculture. This article reviews the studies on probiotics in larviculture, focusing on the current knowledge of their in vivo mechanisms of action. The article highlights that the in vivo mechanisms of action largely remain to be unravelled. Several methodologies are suggested for further in vivo research, including studies on gut microbiota composition, the use of gnotobiotic animals as test models, and the application of molecular techniques to study host-microbe and microbe-microbe interactions.
White spot disease (WSD) is a pandemic disease caused by a virus commonly known as white spot syndrome virus (WSSV). Several risk factors for WSD outbreaks have been suggested. However, there have been very few studies to identify risk factors for WSD outbreaks in culture systems. This paper presents and discusses the risk factors for WSSV infection identified during a longitudinal observational study conducted in a Vietnamese rice-shrimp farming system. A total of 158 variables were measured comprising location, features of the pond, management practices, pond bottom quality, shrimp health and other animals in the pond. At the end of the study period WSSV was detected in 15 of the 24 ponds followed through the production cycle (62.5%). One hundred and thirtynine variables were used in univariate analyses. All the variables with a p-value ≤ 0.10 were used in unconditional logistic regression in a forward stepwise model. An effect of location was identified in both univariate and multivariate analyses showing that ponds located in the eastern portion of the study site, closer to the sea, were more likely to test positive for WSSV by 1-step PCR at harvest. Ponds with shrimp of a smaller average size 1 mo after stocking tended to be positive for WSSV at the end of the production cycle. Average weight at 1 mo was also highlighted in multivariate analyses when considered as either a risk factor or an outcome. Other risk factors identified in univariate analyses were earlier date of stocking and use of commercial feed. A number of variables also appeared to be associated with a reduced risk of WSSV at harvest including the presence of dead post larvae in the batch sampled at stocking, presence of Hemigrapsus spp. crabs during the first month of production, feeding vitamin premix or legumes, presence of high numbers of shrimp with bacterial infection and the presence of larger mud crabs or gobies at harvest. No associations were detected with WSSV at harvest and stocking density, presence, or number or weight of wild shrimp in the pond. The multivariate model to identify outcomes associated with WSSV infection highlighted the presence of high mortality as the main variable explaining the data. The results obtained from this study are discussed in the context of WSD control and areas requiring further investigation are suggested.KEY WORDS: White spot disease · Aquatic epidemiology · Risk factors · Penaeus monodon · Rice-shrimp farming systemResale or republication not permitted without written consent of the publisher
Aims: To evaluate the effect of Vibrio harveyi strains on the growth rate of the gnotobiotically cultured rotifer Brachionus plicatilis, and to establish whether quorum sensing is involved in the observed phenomena. Methods and Results: Gnotobiotic B. plicatilis sensu strictu, obtained by hatching glutaraldehyde‐treated amictic eggs, were used as test organisms. Challenge tests were performed with 11 V. harveyi strains and different quorum sensing mutants derived from the V. harveyi BB120 strain. Brominated furanone [(5Z)‐4‐bromo‐5‐(bromomethylene)‐3‐butyl‐2(5H)‐furanone] as a quorum sensing inhibitor was tested in Brachionus challenge tests. Some V. harveyi strains, such as strain BB120, had a significantly negative effect on the Brachionus growth rate. In the challenge test with MM77, an isogenic strain of BB120 in which the two autoinducers (HAI‐1 and AI‐2) are both inactivated, no negative effect was observed. The effect of single mutants was the same as that observed in the BB120 strain. This indicates that both systems are responsible for the growth‐retarding (GR) effect of the BB120 strain towards Brachionus. Moreover, the addition of an exogenous source of HAI‐1 or AI‐2 could restore the GR effect in the HAI‐1 and AI‐2 nonproducing mutant MM77. The addition of brominated furanone at a concentration of 2·5 mg l−1 could neutralize the GR effect of some strains such as BB120 and VH‐014. Conclusions: Two quorum sensing systems in V. harveyi strain BB120 (namely HAI‐1 and AI‐2‐mediated) are necessary for its GR effect on B. plicatilis. With some other V. harveyi strains, however, growth inhibition towards Brachionus does not seem to be related to quorum sensing. Significance and Impact of the Study: Interference with the quorum sensing system might help to counteract the GR effect of some V. harveyi strains on Brachionus. However, further studies are needed to demonstrate the positive effect of halogenated furanone in nongnotobiotic Brachionus cultures and eventually, in other segments of the aquaculture industry.
Three bacterial enrichment cultures (ECs) were isolated from the digestive tract of Pacific white shrimp Penaeus vannamei, by growing the shrimp microbial communities in a mixture of N-acyl homoserine lactone (AHL) molecules. The ECs, characterized by denaturing gradient gel electrophoresis analysis and subsequent rRNA sequencing, degraded AHL molecules in the degradation assays. Apparently, the resting cells of the ECs also degraded one of the three types of quorum-sensing signal molecules produced by Vibrio harveyi in vitro [i.e. harveyi autoinducer 1 (HAI-1)]. The most efficient AHL-degrading ECs, EC5, was tested in Brachionus experiments. EC5 degraded the V. harveyi HAI-1 autoinducer in vivo, neutralizing the negative effect of V. harveyi autoinducer 2 (AI-2) mutant, in which only the HAI-1-and CAI-1-mediated components of the quorum-sensing system are functional on the growth of Brachionus. This suggests that EC5 interferes with HAI-1-regulated metabolism in V. harveyi. These AHL-degrading ECs need to be tested in other aquatic systems for their probiotic properties, preferably in combination with specific AI-2-degrading bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.