A fail-proof synthetic strategy has been developed for a multiply twinned dumbbell-shaped Rh@Pt nanostructure, which exhibits a superior electrocatalytic activity for methanol oxidation reaction. The unusually high electrocatalytic activity has been attributed to the synergistic effects of crystal twinning and core-shell structure.
By understanding the structural relationship among three shape-controlled Rh nanostructures, namely, {111} nanotetrahedrons, {111} tetrahedral nanoframes, and <111> skeletal nanotetrapods, we could prepare novel hierarchical dendritic Rh nanostructures with <111> Rh arms as linkers between tetrahedral shaped nanocrystals.
Shape‐controlled Pt‐based seeds lead to completely different M/Pt (M = Ru or Rh) structures of nanobox or octapod. Unusually high catalytic activities of Pt@Ru octapod toward the oxygen evolution reaction are observed due to a core–shell effect.
Surface-energy fine-tuned five-fold twinned nanostructures with a core-shell Pt3Ni@Rh structural motif, namely, a core-shell Pt3Ni@Rh pentagon, a core-shell Pt3Ni@Rh starfish, and a paddlewheel with a Pt3Ni crankshaft and two Rh five-fold starfish wheels, are prepared by rationally designed stepwise heteroepitaxial growth. Unusual selective hydrogenation of the phenyl ring in phthalimide is accomplished with moderately active core-shell Pt3Ni@Rh pentagons and starfish-like nanoparticles. The most active paddlewheel structure proceeds to further reduce one carbonyl group, indicating the sequential nature of phthalimide reduction by Rh nanoparticle catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.