The authors implemented an electronic medical record system in a rural Kenyan health center. Visit data are recorded on a paper encounter form, eliminating duplicate documentation in multiple clinic logbooks. Data are entered into an MS-Access database supported by redundant power systems. The system was initiated in February 2001, and 10,000 visit records were entered for 6,190 patients in six months. The authors present a summary of the clinics visited, diagnoses made, drugs prescribed, and tests performed. After system implementation, patient visits were 22% shorter. They spent 58% less time with providers (p < 0.001) and 38% less time waiting (p = 0.06). Clinic personnel spent 50% less time interacting with patients, two thirds less time interacting with each other, and more time in personal activities. This simple electronic medical record system has bridged the "digital divide." Financial and technical sustainability by Kenyans will be key to its future use and development.
A new class of poly-N-vinylpyrrolidinones containing an asymmetric center at C5 of the pyrrolidinone ring were synthesized from l-amino acids. The polymers, particularly 17, were used to stabilize nanoclusters such as Pd/Au for the catalytic asymmetric oxidations of 1,3- and 1,2-cycloalkanediols and alkenes, and Cu/Au was used for C-H oxidation of cycloalkanes. It was found that the bulkier the C5 substituent in the pyrrolidinone ring, the greater the optical yields produced. Both oxidative kinetic resolution of (±)-1,3- and 1,2-trans-cycloalkanediols and desymmetrization of meso cis-diols took place with 0.15 mol % Pd/Au (3:1)-17 under oxygen atmosphere in water to give excellent chemical and optical yields of (S)-hydroxy ketones. Various alkenes were oxidized with 0.5 mol % Pd/Au (3:1)-17 under 30 psi of oxygen in water to give the dihydroxylated products in >93% ee. Oxidation of (R)-limonene at 25 °C occurred at the C-1,2-cyclic alkene function yielding (1S,2R,4R)-dihydroxylimonene 49 in 92% yield. Importantly, cycloalkanes were oxidized with 1 mol % Cu/Au (3:1)-17 and 30% HO in acetonitrile to afford chiral ketones in very good to excellent chemical and optical yields. Alkene function was not oxidized under the reaction conditions. Mechanisms were proposed for the oxidation reactions, and observed stereo- and regio-chemistry were summarized.
Luminescence, energy transfer, and upconversion mechanisms of nanophosphors (Y2O3 : Eu3+,Tb3+,Y2O3 : Tm3+,Y2O3 : Er3+,Yb3+) both in particle and colloidal forms were studied. The structure, phase, and morphology of the nanopowders and nanocolloidal media were determined by high-resolution TEM and X-ray diffraction. It was shown that the obtained nanoparticles have a round-spherical shape with average size in the range of 4 to 20 nm. Energy transfer was observed forY2O3 : Eu3+,Tb3+colloidal and powders, upconversion transitions were observed for bothY2O3 : Er3+andY2O3 : Er3+,Yb3+nanophosphors. The dependence of photoluminescence (PL) spectra and decay times on doping concentration has been investigated. The infrared to visible conversion of emission inY2O3 : Er3+,Yb3+system was analyzed and discussed aiming to be applied in the photonic technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.