Biosorption on lignocellulosic wastes and by-products has been identified as a proper alternative to the existing technologies applied for toxic metal ion and dye removal from wastewater streams. This paper deals with utilization of typical low cost wastes and by-products produced in different food agricultural and agro-industries as biosorbent and reviews the current state of studies on a wide variety of cheap biosorbents in natural and modified forms. The efficiency of each biosorbent has been also discussed with respect to the operating conditions (e.g. temperature, hydraulic residence time, initial metal concentration, biosorbent particle size and its dosage), chemical modification on sorption capacity and preparation methods, as well as thermodynamics and kinetics.
Cationization of agricultural by-products using metal salts is widely used to activate their phosphorous capture ability. This study developed three kinds of new metal loaded soybean milk by-product 'okara' for phosphorus biosorption. A comparative study among these biosorbents was carried out with respect to their performances in terms of affinity, stability and reusability. Zirconium loaded okara (ZLO) was found to have the highest affinity towards PO(4)(3-) anions (47.88 mg/g), followed by iron/zirconium loaded okara--IZLO (40.96 mg/g) and iron loaded okara--ILO (16.39 mg/g). ZLO was successfully desorbed with 0.2M NaOH and activated with 0.1 HCl prior to the next cycle. After five consecutive cycles, the efficiency of both adsorption and desorption of ZLO remained about 85% whilst no Zr(IV) leakage was observed. Conversely, IZLO and ILO suffered from vital short comings such as high metal release and/or sharp reduction in PO4(3-) sequestering capability after multi operation cycles.
Di-n-butyl phthalate (DBP) is a type of phthalate ester, and has been classified as an environmental endocrine disruptor. It causes serious harm to the environment and humans and it is found widely in air, waste water, rivers and soil. In recent years, an increasing number of studies examined the removal of DBP. Photocatalytic degradation has been of particular interest because of its efficient and thorough advantages and is the focus of this study. Here we use a composite material of N-Ti/13X/MCM-41, synthesized, using 13X and tetraethyl orthosilicate as raw material, CTAB as structural template, tetrabutyl titanate and urea under hydrothermal conditions. The optimized experimental conditions, such as, Si/Al (molar ratio), pH value, crystallization time, calcination temperature and N/Ti (molar ratio), were tested using photodegradation experiments of DBP. The samples were characterized by XRD, TEM, FT-IR, N2 adsorption-desorption. Experimental results reveal the surface area of the N-Ti/13X/MCM-41 to be 664 m2 g(-1) and the average pore sizes to be 2.79 nm. TEM micrographs showed the N-Ti/13X/MCM-41 consists of aggregates of spherical particles, similar to the shapes associated with standard MCM-41 synthesized under basic conditions. Photocatalytic degradation experimental results revealed that optimal synthesis of the composite material occurs when Si/Al = 15, pH = 9.0, crystallization time is 48 hours, calcination temperature is 350 °C and the N/Ti ratios is 2.0. Under such conditions, the degradation efficiency of DBP more was found to be more than 90%.
Hydrogen is considered as a promising energy source with its high energy yield, renewable, environment friendly properties. TiO2 modified with noble metal and nonmetal is widely used. In this study, Pt and graphene (GN) were used to modify TiO2 nanoparticles. GN/TiO2 (TG), Pt-TiO2 (PT), Pt-GN/TiO2 (PTG) was successfully synthesized by modified Hummers' method, alcohol thermal and photodeposition method, respectively. The characterizations of the synthesized catalysts by UV-vis/DRS, components analysis, XRD and TEM analysis were conducted. Results showed the maximum hydrogen production rate was approximately 4.71 mmol h-1 g-1 when the Pt content was 1.0 wt.%. Higher and lower than 1.0 wt.% of Pt loading content both result in low efficiency of hydrogen production. The situation of graphene is similar to Pt. The optimal ratio for grapheme is 10 wt.%. The highest hydrogen production rate is 6.58 mmol h-1 g-1 by 1.5 wt.% Pt-5 wt.% GN/TiO2 (1.5PTG5), which is about 1.4 and 2.2 times higher than that of Pt-TiO2 and GN/TiO2 binary composites, respectively. The utilization of low-cost graphene can reduce the use of noble metal Pt in photocatalytic hydrogen production. The mechanism of Pt-GN/TiO2 for the improved photocatalytic activity is proposed. 0.1 g L-1 is found to be the optimum catalyst concentration for optimal hydrogen production.
Arsenic is a carcinogenic substance, with many cases of poisoning related to arsenic pollution in groundwater. In Taiwan arsenic in groundwater caused the notorious Blackfoot disease. Methods for arsenic removal from water include precipitation, membrane processes, ion exchange, and adsorption, but these processing technologies suffer from high investment costs and complex operations. The traditional adsorption method cannot be used for arsenic removal due to its high operating costs, difficulties in recovery, and low adsorption capacity. To address these issues, this study designed an adsorption material based on biochar for arsenic removal with higher adsorption properties and easy recovery. Biochar sources are readily available from waste wood as a cheap and environmentally friendly material. The efficiency of As (III) removal is also promoted by FeCl3 and KMnO4. The objectives of this research are to obtain optimum operation conditions by assessing the effects of different iron and manganese contents, different doses, different pH and different initial concentration. The adsorption mechanism between As (III) and biochar was studied by adsorption isotherms and the kinetic model. X-ray diffraction, energy-dispersive X-ray spectroscopy and elemental analyzer analysis results show that modified biochar has major elements of Fe and Mn. There is greater magnetism, 40 emu g− 1, in the modified biochar. The maximum adsorption efficiency of 81% and 0.72 mg g− 1 capacity occurs when the ratio of Mn, Fe and C is 4:1:1. The adsorption capacity is high under higher pH with pristine biochar and 1FeC under lower pH with 1Fe2MnC. The reaction mechanism is divided into four pathways. The first pathway is the attachment of As (III) ions into the pore of biochar via physical adsorption. In the second pathway, biochar can connect with As (III) through hydrogen bonding from the function group -OH in the biochar and the As (III) itself. In the third pathway, they can contact each other by electron force when the biochar surface is filled with a positive charge. In the fourth pathway, the compounds of manganese have strong oxidizability to oxidize As (III) to As(V). The iron ions then act as a bridge connecting the biochar and the As (III), resulting in the formation of new complex compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.