Underwater wireless sensor networks are currently seeing broad research in various applications for human benefits. Large numbers of sensor nodes are being deployed in rivers and oceans to monitor the underwater environment. In the paper, we propose an energy-efficient clustering multi-hop routing protocol (EECMR) which can balance the energy consumption of these nodes and increase their network lifetime. The network area is divided into layers with regard to the depth level. The data sensed by the nodes are transmitted to a sink via a multi-hop routing path. The cluster head is selected according to the depth of the node and its residual energy. To transmit data from the node to the sink, the cluster head aggregates the data packet of all cluster members and then forwards them to the upper layer of the sink node. The simulation results show that EECMR is effective in terms of network lifetime and the nodes’ energy consumption.
In this study, we deploy design and performance analysis in new system model using a relaying model, energy harvesting, and non-orthogonal multi-access (NOMA) network. It is called such topology as wireless powered NOMA relaying (WPNR). In the proposed model, NOMA will be investigated in two cases including single successive interference cancellation (SIC) and dual SIC. Moreover, the simultaneous wireless information and power transfer (SWIPT) technology can be employed to feed energy to relays who intend to serve far NOMA users. In particular, exact outage probability expressions are provided to performance evaluation. The results from the simulations are used to demonstrate the outage performance of the proposed model in comparison with the current models and to verify correct of derived expressions.
We study a hybrid satellite-terrestrial cognitive network (HSTCN) relying on non-orthogonal multiple access (NOMA) interconnecting a satellite and multiple terrestrial nodes. In this scenario, the long distance communication is achieved by the satellite equipped multiple antennas to send information to a multi-antenna destinations through the base station acting as relay. The secure performance is necessary to study by exploiting the appearance of an eavesdropper attempting to intercept the transmissions from relay to destinations. We explore situation of hardware imperfections in secondary network and deign of multiple antennas need be investigated in term of the physical-layer security by adopting the decode-and-forward (DF) relay strategy. Specifically, we guarantee coverage area by enabling relaying scheme and keep outage probability (OP) performance satisfying required data rates. Moreover, suppose that only the main channels' state information is known while the wiretap channels' state information is unavailable due to the passive eavesdropper, we analyze the secrecy performance in term of intercept probability (IP) of the HSTCN by driving the closed-form expressions of such performance metric. Finally, the presented simulation results show that: 1) The outage behaviors of NOMA-based HSTCN network does not depend on transmit signal to noise ratio (SNR) at source at high SNR; 2) Numerical results show that the such system using higher number of transceiver antennas generally outperform the system with less antennas in terms of OP and IP and reasonable selection of parameters is necessary to remain the secrecy performance of such systems; and 3) By allocating different power levels to tow users, the second user has better secure behavior compared with the first user regardless of other set of satellite links or the number of antennas, which means that the superiority of the second user compared with user the first user in terms of OP and IP are same. INDEX TERMS hybrid satellite-terrestrial cognitive systems, outage probability, Shadowed-Rician fading
In the paper, we present a study on the performance analysis of a non-orthogonal multiple access (NOMA) underlay cognitive hybrid satellite-terrestrial relaying network (CSTRN) and highlight the performance gaps between multiple users. The satellite source communicates with users by enabling cognitive radio scheme to forward signals to secondary destinations on the ground which belong to dedicated groups following the principle of NOMA. In this scenario, the secondary source acts a relay and employs Amplify and Forward (AF) mode to serve distant NOMA users under a given interference constraint. To characterize the transmission environment, the shadowed-Rician fading and Nakagami-m fading models are widely adopted to the relevant hybrid channels. To provide detailed examination of the system performance metrics, we aim to derive closed-form formulas for the outage probability of the secondary destinations in the presence of the primary interference power constraint imposed by the adjacent primary satellite network. Finally, our simulation results showed that a greater number of antennas, better quality of wireless channels and power allocation factors exhibit the main effects on system performance.INDEX TERMS non-orthogonal multiple access, cognitive hybrid satellite-terrestrial relaying network, cognitive radio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.