BAP31 is an endoplasmic reticulum protein-sorting factor that associates with newly synthesized integral membrane proteins and controls their fate (i.e., egress, retention, survival, or degradation). BAP31 is itself an integral membrane protein and a constituent of several large protein complexes. Here, we show that a part of the BAP31 population interacts with two components of the Sec61 preprotein translocon, Sec61beta and TRAM. BAP31 associates with the N terminus of one of its newly synthesized client proteins, the DeltaF508 mutant of CFTR, and promotes its retrotranslocation from the ER and degradation by the cytoplasmic 26S proteasome system. Depletion of BAP31 reduces the proteasomal degradation of DeltaF508 and permits a significant fraction of the surviving protein to reach the cell surface. Of note, BAP31 also associates physically and functionally with the Derlin-1 protein disclocation complex in the DeltaF508 degradation pathway. Thus, BAP31 operates at early steps to deliver newly synthesized CFTRDeltaF508 to its degradation pathway.
Successful male gametogenesis involves orchestration of sequential gene regulation for somatic differentiation in pre-meiotic anthers. We report here the cloning of Male Sterile23 (Ms23), encoding an antherspecific predicted basic helix-loop-helix (bHLH) transcription factor required for tapetal differentiation; transcripts localize initially to the precursor secondary parietal cells then predominantly to daughter tapetal cells. In knockout ms23-ref mutant anthers, five instead of the normal four wall layers are observed. Microarray transcript profiling demonstrates a more severe developmental disruption in ms23-ref than in ms32 anthers, which possess a different bHLH defect. RNA-seq and proteomics data together with yeast two-hybrid assays suggest that MS23 along with MS32, bHLH122 and bHLH51 act sequentially as either homo-or heterodimers to choreograph tapetal development. Among them, MS23 is the earliest-acting factor, upstream of bHLH51 and bHLH122, controlling tapetal specification and maturation. By contrast, MS32 is constitutive and independently regulated and is required later than MS23 in tapetal differentiation.
Gene and protein set enrichment analysis is a critical step in the analysis of data collected from omics experiments. Enrichr is a popular gene set enrichment analysis web-server search engine that contains hundreds of thousands of annotated gene sets. While Enrichr has been useful in providing enrichment analysis with many gene set libraries from different categories, integrating enrichment results across libraries and domains of knowledge can further hypothesis generation. To this end, Enrichr-KG is a knowledge graph database and a web-server application that combines selected gene set libraries from Enrichr for integrative enrichment analysis and visualization. The enrichment results are presented as subgraphs made of nodes and links that connect genes to their enriched terms. In addition, users of Enrichr-KG can add gene-gene links, as well as predicted genes to the subgraphs. This graphical representation of cross-library results with enriched and predicted genes can illuminate hidden associations between genes and annotated enriched terms from across datasets and resources. Enrichr-KG currently serves 26 gene set libraries from different categories that include transcription, pathways, ontologies, diseases/drugs, and cell types. To demonstrate the utility of Enrichr-KG we provide several case studies. Enrichr-KG is freely available at: https://maayanlab.cloud/enrichr-kg.
Low levels of organic and inorganic mercury compounds have been reported previously to induce cell death by apoptosis in human peripheral blood mononuclear cells (MNC). but little is known about their potential effects on the viability and death of polymorphonuclear neutrophils (PMN). In contrast to MNC, PMN are known to undergo readily spontaneous apoptosis both in vivo and in vitro. Therefore, it was hypothesized that PMN may differ from MNC in their reactions to low mercury levels. The effects of methylmercuric chloride (MeHgCl) and mercuric chloride (HgCl2) were evaluated in concentration-response and time-course studies on human PMN viability and on their modes of cell death after in vitro incubation at 37 degrees C. Cell death by apoptosis or necrosis was assessed by annexin V-fluorescein isothiocyanate binding to externalized phosphatidylserine in conjunction with propidium iodide, and flow cytometry analysis. Morphologic counting of pyknotic nuclei and the fluorescence properties of the DNA-binding dye Hoechst 33342 in combination with propidium iodide were used to further confirm apoptotic cell death and to characterize the sequence of Hg-induced cell death. Results show that low concentrations of MeHgCl (1-7.5 microM) that were cytotoxic to MNC actually inhibited PMN spontaneous apoptosis. Low-level HgCl, reproduced the anti-apoptotic effects of MeHgCl on PMN, but to a lower extent. Higher concentrations of MeHgCl and HgCl2 were necrogenic to PMN, but MeHgCl was about an order of magnitude more toxic, and discrete differences were observed in the modalities of cell death induced by both species. These data reveal for the first time that (1) low levels of organic and inorganic mercury species protect human PMN from cell death via inhibition of spontaneous apoptosis, and (2) PMN are more resistant than MNC to mercury-induced cytotoxicity. Since delayed apoptosis and increased resistance to toxicant-induced cell death may lead to excessive accumulation of senescent PMN, evidence indicates that findings of this study may have implications for mercury-induced autoimmunity and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.