Securing the sensitive data stored and accessed from mobile devices makes user authentication a problem of paramount importance. The tension between security and usability renders however the task of user authentication on mobile devices a challenging task. This paper introduces FAST (Fingergestures Authentication System using Touchscreen), a novel touchscreen based authentication approach on mobile devices. Besides extracting touch data from touchscreen equipped smartphones, FAST complements and validates this data using a digital sensor glove that we have built using off-the-shelf components. FAST leverages state-of-the-art classification algorithms to provide transparent and continuous mobile system protection. A notable feature is FAST 's continuous, user transparent postlogin authentication. We use touch data collected from 40 users to show that FAST achieves a False Accept Rate (FAR) of 4.66% and False Reject Rate of 0.13% for the continuous post-login user authentication. The low FAR and FRR values indicate that FAST provides excellent post-login access security, without disturbing the honest mobile users.
Objective This article describes an ensembling system to automatically extract adverse drug events and drug related entities from clinical narratives, which was developed for the 2018 n2c2 Shared Task Track 2. Materials and Methods We designed a neural model to tackle both nested (entities embedded in other entities) and polysemous entities (entities annotated with multiple semantic types) based on MIMIC III discharge summaries. To better represent rare and unknown words in entities, we further tokenized the MIMIC III data set by splitting the words into finer-grained subwords. We finally combined all the models to boost the performance. Additionally, we implemented a featured-based conditional random field model and created an ensemble to combine its predictions with those of the neural model. Results Our method achieved 92.78% lenient micro F1-score, with 95.99% lenient precision, and 89.79% lenient recall, respectively. Experimental results showed that combining the predictions of either multiple models, or of a single model with different settings can improve performance. Discussion Analysis of the development set showed that our neural models can detect more informative text regions than feature-based conditional random field models. Furthermore, most entity types significantly benefit from subword representation, which also allows us to extract sparse entities, especially nested entities. Conclusion The overall results have demonstrated that the ensemble method can accurately recognize entities, including nested and polysemous entities. Additionally, our method can recognize sparse entities by reconsidering the clinical narratives at a finer-grained subword level, rather than at the word level.
Background Species occurrence records are very important in the biodiversity domain. While several available corpora contain only annotations of species names or habitats and geographical locations, there is no consolidated corpus that covers all types of entities necessary for extracting species occurrence from biodiversity literature. In order to alleviate this issue, we have constructed the COPIOUS corpus—a gold standard corpus that covers a wide range of biodiversity entities. Results Two annotators manually annotated the corpus with five categories of entities, i.e. taxon names, geographical locations, habitats, temporal expressions and person names. The overall inter-annotator agreement on 200 doubly-annotated documents is approximately 81.86% F-score. Amongst the five categories, the agreement on habitat entities was the lowest, indicating that this type of entity is complex. The COPIOUS corpus consists of 668 documents downloaded from the Biodiversity Heritage Library with over 26K sentences and more than 28K entities. Named entity recognisers trained on the corpus could achieve an F-score of 74.58%. Moreover, in recognising taxon names, our model performed better than two available tools in the biodiversity domain, namely the SPECIES tagger and the Global Name Recognition and Discovery. More than 1,600 binary relations of Taxon-Habitat, Taxon-Person, Taxon-Geographical locations and Taxon-Temporal expressions were identified by applying a pattern-based relation extraction system to the gold standard. Based on the extracted relations, we can produce a knowledge repository of species occurrences. Conclusion The paper describes in detail the construction of a gold standard named entity corpus for the biodiversity domain. An investigation of the performance of named entity recognition (NER) tools trained on the gold standard revealed that the corpus is sufficiently reliable and sizeable for both training and evaluation purposes. The corpus can be further used for relation extraction to locate species occurrences in literature—a useful task for monitoring species distribution and preserving the biodiversity.
Existing biomedical coreference resolution systems depend on features and/or rules based on syntactic parsers. In this paper, we investigate the utility of the stateof-the-art general domain neural coreference resolution system on biomedical texts. The system is an end-to-end system without depending on any syntactic parsers. We also investigate the domain specific features to enhance the system for biomedical texts. Experimental results on the BioNLP Protein Coreference dataset and the CRAFT corpus show that, with no parser information, the adapted system compared favorably with the systems that depend on parser information on these datasets, achieving 51.23% on the BioNLP dataset and 36.33% on the CRAFT corpus in F1 score. In-domain embeddings and domain-specific features helped improve the performance on the BioNLP dataset, but they did not on the CRAFT corpus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.