Copper and silicon ions exhibited synergy effects in vascularization stimulation by copper-doped calcium silicate bioceramics in a HDF–HUVEC co-culture system.
With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe₃O₄@SiO₂@Au), composed of a Fe₃O₄ cluster core, a thin Au shell and a SiO₂ layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe₃O₄@SiO₂@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe₃O₄@SiO₂@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.