The peroxiredoxin (Prx) family of Cys-dependent peroxidases control intracellular levels of H 2 O 2 and can regulate signal transduction. Inhibition of the Prxs, through hyperoxidation amongst other mechanisms, leads to oxidative stress conditions that can alter homeostatic signaling. To determine the effects oxidation of Prx1-Prx3 has on MAP kinase and IGF-1 signaling events in human chondrocytes, this study used 2-methyl-1,4-naphthoquinone (menadione) and 2,3-dimethyl-1,4naphthoquinone (DMNQ) as H 2 O 2 generating tools due to their differential mechanisms of action. Menadione and DMNQ generated similar levels of intracellular H 2 O 2 as determined using the biosensor Orp1-roGFP and by measuring Prx redox status. However, menadione generated higher levels of mitochondrial H 2 O 2 associated with Prx3 hyperoxidation and phosphorylation of Prx1 while DMNQ treatment was associated with hyperoxidation of cytosolic Prx1 and Prx2 but not mitochondrial Prx3. Both menadione and DMNQ induced sustained phosphorylation of p38 but only DMNQ activated JNK. Menadione but not DMNQ inhibited IGF-1induced Akt phosphorylation. Chondrocytes transduced with an adenoviral vector to overexpress Prx3 displayed decreased PrxSO 2/3 formation in response to menadione which was associated with restoration of IGF-1-mediated Akt signaling and inhibition of p38 phosphorylation. Prx1 and Prx2 overexpression had no effects on Prx redox status but Prx1 overexpression enhanced basal Akt
By visualizing the movements of Rituximab during Antibody dependent cellular phagocytosis (ADCP) of B lymphoma cells by macrophages, we found that Fcγ receptors (FcγR) on the macrophage surface microcluster, recruit Syk and undergro large-scale reorganization at the phagocytic synapse prior to and during engulfment of the target cell. Given these dramatic rearrangements, we analyzed how the surface mobility of Rituximab contributes to FcγR signal amplification and ADCP efficiency. Depolymerization of the target cell actin cytoskeleton resulted in free diffusion of Rituximab docked to CD20, enhanced microcluster reorganization, Syk recruitment and ADCP. Conversely, immobilization of Rituximab by chemical fixation impaired microcluster formation and diminished Syk recruitment and ADCP. In macrophages lacking Syk, Rituximab accumulated at the base of the phagosome and were trogocytosed, consistent with Syk kinase activity being necessary to trigger redistribution of Rituximab-FcγR during engulfment and to prevent antigenic modulation of the target. Total internal reflection fluorescence analysis of FcγR-IgG on fluid supported lipid bilayers revealed a membrane topography displaying inward reaching leading edges and protruding contact sites reminiscent of podosomes. This topography was distinct from the closely apposed macrophage/target membranes observed during engagement of IgG displayed on immobile supported lipid bilayers. The organization of this contact, pseudopod extension and the rearrangement of microclusters depended critically on Arp 2/3. Thus, Syk and Arp2/3 coordinate actin rearrangements and FcγR-IgG complexes that were of previously unrecognized complexity for the clearance of cells displaying surface-mobile antigens.Significance StatementADCP is an important effector mechanism for the removal of malignant, immunologically aberrant, and infected cells during treatment with therapeutic antibodies or adaptive immune responses. Most transmembrane protein antigens are mobile with transient confinement from the actin of the target cell. This work demonstrates that macrophage forces overcome these confinements to rearrange FcγR-IgG-antigen complexes before and during ADCP. Thus, new paradigms are needed as ADCP has largely been studied using model target particles that display immobile antigens. Moreover, we found that the mobility of the therapeutic antibody, Rituximab, on the surface of B lymphoma cells foretells ADCP efficacy, with lower densities of IgG mediating ADCP on increasingly mobile antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.