Under visible light irradiation, o-phosphinophenolate functions as an easily accessible photoredox catalyst to activate trifluoromethyl groups in trifluoroacetamides, trifluoroacetates, and trifluoromethyl (hetero)arenes to deliver corresponding difluoromethyl radicals. It works in relay with a thiol hydrogen atom transfer (HAT) catalyst to enable selective defluoroalkylation and hydrodefluorination. The reaction allows for the facile synthesis of a broad scope of difluoromethylene-incorporated carbonyl and (hetero)aromatic compounds, which are valuable fluorinated intermediates of interest in the pharmaceutical industry. The ortho-diphenylphosphino substituent, which is believed to facilitate photoinduced electron transfer, plays an essential role in the redox reactivity of phenolate. In addition to trifluoromethyl groups, pentafluoroethyl groups could also be selectively defluoroalkylated.
o-Phosphinophenolate and o-phosphinothiophenolate are potent photocatalysts with strong reducing ability to activate aryl chlorides and bromides under visible light for borylation, arylation, and phosphorylation. Experimental and theoretical studies revealed that the o-diphenylphosphino substituent results in a narrow optical gap and facilitates intersystem crossing to access triplet states, which promote phenolate and thiophenolate to function as effective visible-light-photoredox catalysts. The results presented herein suggest promising utility of synthetically modified phenolates and thiophenolates as photoredox catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.