The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) over angular scales between 1 arcminute and tens of degrees using over 60,000 detectors and sampling frequencies between 27 and 270 GHz. SO will consist of a six-meteraperture telescope coupled to over 30,000 detectors and an array of half-meter aperture refractive cameras, coupled to an additional 30,000+ detectors. The unique combination of large and small apertures in a single CMB observatory will allow us to sample a wide range of angular scales over a common survey area while providing an important stepping stone towards the realization of CMB-Stage IV. CMB-Stage IV is a proposed project that will combine and expand on existing facilities in Chile and Antarctica to reach the 500,000 detectors required for CMB-Stage IV's science objectives. SO and CMB-Stage IV will measure fundamental cosmological parameters of our universe, constrain primordial fluctuations, find high redshift clusters via the Sunyaev-Zeldovich effect, constrain properties of neutrinos, and trace the density and velocity of the matter in the universe over cosmic time. The complex set of technical and science requirements for SO has led to innovative instrumentation solutions which we will discuss. For instance, the SO large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter and 2.4 m long. We will give an overview of the drivers for and designs of the SO telescopes and cameras as well as the current status of the project. We will also discuss the current status of CMB-Stage IV and important next steps in the project's development.
The CMB B-mode polarisation signal — both the primordial gravitational wave signature and the signal sourced by lensing — is subject to many contaminants from systematic effects. Of particular concern are systematics that result in mixing of signals of different “spin”, particularly leakage from the much larger spin-0 intensity signal to the spin-2 polarisation signal. We present a general formalism, which can be applied to arbitrary focal plane setups, that characterises signals in terms of their spin. We provide general expressions to describe how spin-coupled signals observed by the detectors manifest at map-level, in the harmonic domain, and in the power spectra, focusing on the polarisation spectra — the signals of interest for upcoming CMB surveys. We demonstrate the presence of a previously unidentified cross-term between the systematic and the intrinsic sky signal in the power spectrum, which in some cases can be the dominant source of contamination. The formalism is not restricted to intensity to polarisation leakage but provides a complete elucidation of all leakage including polarisation mixing, and applies to both full and partial (masked) sky surveys, thus covering space-based, balloon-borne, and ground-based experiments. Using a pair-differenced setup, we demonstrate the formalism by using it to completely characterise the effects of differential gain and pointing systematics, incorporating both intensity leakage and polarisation mixing. We validate our results with full time ordered data simulations. Finally, we show in an Appendix that an extension of simple binning map-making to include additional spin information is capable of removing spin-coupled systematics during the map-making process.
Future CMB experiments will require exquisite control of systematics in order to constrain the B-mode polarisation power spectrum. One class of systematics that requires careful study is instrumental systematics. The potential impact of such systematics is most readily understood by considering analysis pipelines based on pair differencing. In this case, any differential gain, pointing or beam ellipticity between the two detectors in a pair can result in intensity leakage into the B-mode spectrum, which needs to be controlled to a high precision due to the much greater magnitude of the total intensity signal as compared to the B-mode signal. One well known way to suppress such systematics is through careful design of the scan-strategy, in particular making use of any capability to rotate the instrument about its pointing (boresight) direction.Here, we show that the combination of specific choices of such partial boresight rotation angles with redundancies present in the scan strategy is a powerful approach for suppressing systematic effects. This mitigation can be performed in analysis in advance of map-making and, in contrast to other approaches (e.g. deprojection or filtering), results in no signal loss. We demonstrate our approach explicitly with time ordered data simulations relevant to next-generation ground-based CMB experiments, using deep and wide scan strategies appropriate for experiments based in Chile. These simulations show a reduction of multiple orders of magnitude in the spurious B-mode signal arising from differential gain and differential pointing systematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.