BackgroundAutism spectrum disorder (ASD) is a neurodevelopmental disorder with a high co-morbidity of epilepsy and associated with hundreds of rare risk factors. NRXN1 deletion is among the commonest rare genetic factors shared by ASD, schizophrenia, intellectual disability, epilepsy, and developmental delay. However, how NRXN1 deletions lead to different clinical symptoms is unknown. Patient-derived cells are essential to investigate the functional consequences of NRXN1 lesions to human neurons in different diseases.MethodsSkin biopsies were donated by five healthy donors and three ASD patients carrying NRXN1α+/− deletions. Seven control and six NRXN1α+/− iPSC lines were derived and differentiated into day 100 cortical excitatory neurons using dual SMAD inhibition. Calcium (Ca2+) imaging was performed using Fluo4-AM, and the properties of Ca2+ transients were compared between two groups of neurons. Transcriptome analysis was carried out to undercover molecular pathways associated with NRXN1α+/− neurons.ResultsNRXN1α+/− neurons were found to display altered calcium dynamics, with significantly increased frequency, duration, and amplitude of Ca2+ transients. Whole genome RNA sequencing also revealed altered ion transport and transporter activity, with upregulated voltage-gated calcium channels as one of the most significant pathways in NRXN1α+/− neurons identified by STRING and GSEA analyses.ConclusionsThis is the first report to show that human NRXN1α+/− neurons derived from ASD patients’ iPSCs present novel phenotypes of upregulated VGCCs and increased Ca2+ transients, which may facilitate the development of drug screening assays for the treatment of ASD.
Background NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/β/γ. Previous studies on cultured cells show that the short NRXN1β primarily exerts excitation effect, whereas the long NRXN1α which is more commonly deleted in patients involves in both excitation and inhibition. However, patient-derived models are essential for understanding functional consequences of NRXN1α deletions in human neurons. We recently derived induced pluripotent stem cells (iPSCs) from five controls and three ASD patients carrying NRXN1α+/- and showed increased calcium transients in patient neurons. Methods In this study we investigated the electrophysiological properties of iPSC-derived cortical neurons in control and ASD patients carrying NRXN1α+/- using patch clamping. Whole genome RNA sequencing was carried out to further understand the potential underlying molecular mechanism. Results NRXN1α+/- cortical neurons were shown to display larger sodium currents, higher AP amplitude and accelerated depolarization time. RNASeq analyses revealed transcriptomic changes with significant upregulation glutamatergic synapse and ion channels/transporter activity including voltage-gated potassium channels (GRIN1, GRIN3B, SLC17A6, CACNG3, CACNA1A, SHANK1), which are likely to couple with the increased excitability in NRXN1α+/- cortical neurons. Conclusions Together with recent evidence of increased calcium transients, our results showed that human NRXN1α+/- isoform deletions altered neuronal excitability and non-synaptic function, and NRXN1α+/- patient iPSCs may be used as an ASD model for therapeutic development with calcium transients and excitability as readouts.
Background Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative movement disorder characterized by tremor, ataxic gait, and balance issues resulting from a premutation of the Fragile X Mental Retardation 1 (FMR1) gene. No biomarkers have yet been identified to allow early diagnosis of FXTAS, however, recent studies have reported subtle issues in the stability of younger premutation carriers, before disease onset. This study investigates the efficacy of multiscale entropy analysis (MSE) in detecting early changes in the motor system of premutation carriers without FXTAS. Methods Sway complexity of 12 female Premutation carriers and 15 healthy Controls were measured under four conditions: eyes open, closed, and two dual-task conditions. A Sustained Attention Response Task (SART) and a working memory based N-Back task were employed to increase cognitive load while standing on the forceplate. A Complexity Index (Ci) was calculated for anterior-posterior (AP) and mediolateral (ML) sway. Independent t-tests were used to assess between-group differences and Oneway repeated measures ANOVA were used to assess within group differences with Bonferroni corrections to adjust for multiple comparisons. Results Group performances were comparable with eyes open and closed conditions. The Carrier group’s Ci was consistent across tasks and conditions while the Control group’s AP Ci increased significantly during the cognitive dual-task ( p = 0.001). There was also a strong correlation between CGG repeat length and complexity for the Carrier group ( p = 0.004). Significance Increased sway complexity is believed to stem from reallocation of attention to facilitate the increased cognitive demands of dual-tasks. Carriers’ complexity did not change during dual-tasks, possibly indicating capacity interference and inefficient division of attention. Lower sway complexity in carriers suggests diminished adaptive capacity under stress as well as degradation of motor functioning. Therefore, sway complexity may be a useful tool in identifying early functional decline in FMR1 premutation carriers as well as monitoring progression towards disease onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.