Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly, this document intends to review the sampling of hydrogen and the available analytical methods, together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed, however some of them are challenging, especially the halogenated compounds since only some halogenated compounds are covered, not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex, enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat, industry, and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming, proton exchange membrane water electrolysis, and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis, and water, carbon dioxide, and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Maritime transport is investigating several options to reduce its greenhouse gases and air pollutant emissions. An experimental ship, Energy Observer, is using excess renewable energy to generate onboard hydrogen by electrolysis of purified seawater. As a promising option for storing energy, it can provide on-demand energy to the ship through a hydrogen fuel cell (FC). As hydrogen FCs lifetime and performance are correlated to hydrogen quality, the hydrogen produced onboard needs to be monitored. This study assesses the probability of contaminants presence for this electrolyser, using purified seawater and supports the results with a hydrogen fuel quality analysis from the Energy Observer ship. It demonstrates that an electrolyser using onboard purified seawater can generate hydrogen of a quality compliant with ISO 14687:2019. Additional contaminants (i.e., ions, heavy metal) were also measured. The study highlights the potential contaminants to be monitored and future research on new contaminants from seawater to further develop hydrogen fuel for maritime applications.
The paper describes some aspects of the findings of an investigation which was initiated mainly to obtain a better understanding of the phenomenon of knock under dual-fuel operation and to determine the effect of various operating parameters on the knock-free performance limits and the nature of these limits. Some common gaseous fuels such as methane, propane, ethylene, acetylene, hydrogen and somc of their mixtures were used as the main fuels. A method is suggested to relate changes in the knock-limited power output of a dual-fuel engine with the intake temperature of the charge and the nature of the main fuel used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.