An economically efficient day-ahead tariff (DT) is proposed with the purpose of preventing the distribution grid congestion resulting from electric vehicle (EV) charging scheduled on a dayahead basis. The DT concept developed herein is derived from the locational marginal price (LMP), in particular the congestion cost component of the LMP. A step-wise congestion management structure has been developed whereby the distribution system operator (DSO) predicts congestion for the coming day and publishes DTs prior to the clearing of the day-ahead market. EV fleet operators (FOs) optimize their EV charging schedules with respect to the predicted day-ahead prices and the published DTs, thereby avoiding congestion while still minimizing the charging cost. A Danish 400V distribution network is used to carry out case studies to illustrate the effectiveness of the developed concept for the prevention of distribution grid congestion from EV charging. The case study results show that the concept is successful in a number of situations, most notably a system over-load of 155% can be successfully alleviated on the test distribution network.
This paper proposes a method of describing the load shifting ability of flexible electrical loads in a manner suitable for existing power system dispatch frameworks. The concept of an asymmetric block offer for flexible loads is introduced. This offer structure describes the ability of a flexible load to provide a response to the power system and the subsequent need to recover. The conventional system dispatch algorithm is altered to facilitate the dispatch of demand response units alongside generating units using the proposed offer structure. The value of demand response is assessed through case studies that dispatch flexible supermarket refrigeration loads for the provision of regulating power. The demand resource is described by a set of asymmetric blocks, and a set of four blocks offers is shown to offer cost savings for the procurement of regulating power in excess of 20%. For comparative purposes, the cost savings achievable with a fully observable and controllable demand response resource are evaluated, using a time series model of the refrigeration loads. The fully modeled resource offers greater savings; however the difference is small and potentially insufficient to justify the investment required to fully model and control individual flexible loads.Index Terms-Demand-side management, electricity markets, mixed-integer linear programming, refrigeration, time-series analysis.
0885-8950
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.