Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.
Chiral self-assembled nanomaterials with biological applications have attracted great interest. In this study, DNA-driven gold-upconversion nanoparticle (Au-UCNP) pyramids were fabricated to detect intracellular microRNA (miRNA) in real time. The Au-UCNP pyramids are doubly optically active, displaying strong plasmonic circular dichroism (CD) at 521 nm and significant luminescence in 500-600 nm, and therefore can be monitored by both of them. CD will decrease while the luminescence intensity increases in the presence of miRNA. The experimental results show that the CD intensity had an outstanding linear range from 0.073 to 43.65 fmol/10 μg(RNA) and a limit of detection (LOD) of 0.03 fmol/10 μg(RNA), whereas the luminescence intensity ranged from 0.16 to 43.65 fmol/10 μg(RNA) with a LOD of 0.12 fmol/10 μg(RNA). These data indicate that the CD signal is much more sensitive to the concentration of miRNA than the luminescent signal, which is attributed to the strong CD intensity arising from the spin angular momentum of the photon interaction with chiral nanostructures and the plasmonic enhancement of the intrinsic chirality of DNA molecules in the pyramids. This approach opens up a new avenue to the ultrasensitive detection and quantification of miRNA in living cells.
Conjugates of bovine serum albumin and CdTe nanoparticles capped with l-cysteine have been synthesized via a one-pot glutaric dialdehyde
cross-linking procedure. Diads (1:1) with some amount of 2:1 albumin−nanoparticle assemblies preferably form in this reaction, as evidenced
by gel electrophoresis. Circular dichroism spectroscopy demonstrates that the tertiary structure of the protein remains largely intact after the
conjugation. Attachment of protein moieties result in a significant increase of CdTe emission, which is attributed to the resonance energy
transfer from the tryptophan moieties of albumin to CdTe nanoparticles acting as receptors for the protein antennae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.