In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
A preliminary version appeared as INRIA Research Report 5255, July 2004.Tensors are nowadays a common source of geometric information. In this paper, we propose to endow the tensor space with an affine-invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors are uniquely defined, etc. We have previously shown that the Riemannian metric provides a powerful framework for generalizing statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of missing data. For instance, most interpolation and Gaussian filtering schemes can be tackled efficiently through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our Riemannian framework, through partial differential evolution equations, provided that the metric of the tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute the gradient and Laplace-Beltrami operators. Finally, to enforce the fidelity to the data (either sparsely distributed tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian distance which are particularly simple and efficient to solve
We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians.
Diffusion tensor imaging (DT-MRI or DTI) is an emerging imaging modality whose importance has been growing considerably. However, the processing of this type of data (i.e., symmetric positive-definite matrices), called "tensors" here, has proved difficult in recent years. Usual Euclidean operations on matrices suffer from many defects on tensors, which have led to the use of many ad hoc methods. Recently, affine-invariant Riemannian metrics have been proposed as a rigorous and general framework in which these defects are corrected. These metrics have excellent theoretical properties and provide powerful processing tools, but also lead in practice to complex and slow algorithms. Key words: DT-MRI; Riemannian metrics; vector space; interpolation; regularizationDiffusion tensor imaging (DT-MRI or DTI or equivalently DT imaging) (1) is an emerging imaging modality whose importance has been growing considerably. In particular, most attempts to reconstruct noninvasively the connectivity of the brain are based on DTI (see (2-7) and references within for classical fiber tracking algorithms). Other applications of DT-MRI also include the study of diseases such as stroke, multiple sclerosis, dyslexia, and schizophrenia (8).The diffusion tensor is a simple and powerful model used to analyze the content of diffusion-weighted images (DWMRIs). It is based on the assumption that the motion of water molecules can be well approximated by a Brownian motion in each voxel of the image. This Brownian motion is entirely characterized by a symmetric and positive-definite matrix, called the "diffusion tensor" (1). In this article, we restrict the term tensor to mean a symmetric and positivedefinite matrix.With the increasing use of DT-MRI, there has been a growing need to generalize to the tensor case many usual vector processing tools. In particular, regularization techniques
In this work we present a new generalization of the geometric mean of positive numbers on symmetric positive-definite matrices, called Log-Euclidean. The approach is based on two novel algebraic structures on symmetric positive-definite matrices: first, a lie group structure which is compatible with the usual algebraic properties of this matrix space; second, a new scalar multiplication that smoothly extends the Lie group structure into a vector space structure. From biinvariant metrics on the Lie group structure, we define the Log-Euclidean mean from a Riemannian point of view. This notion coincides with the usual Euclidean mean associated with the novel vector space structure. Furthermore, this means corresponds to an arithmetic mean in the domain of matrix logarithms. We detail the invariance properties of this novel geometric mean and compare it to the recently introduced affine-invariant mean. The two means have the same determinant and are equal in a number of cases, yet they are not identical in general. Indeed, the Log-Euclidean mean has a larger trace whenever they are not equal. Last but not least, the Log-Euclidean mean is much easier to compute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.