Background
The burden and influence of health-care associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unknown. We aimed to examine the use of rapid SARS-CoV-2 sequencing combined with detailed epidemiological analysis to investigate health-care associated SARS-CoV-2 infections and inform infection control measures.
Methods
In this prospective surveillance study, we set up rapid SARS-CoV-2 nanopore sequencing from PCR-positive diagnostic samples collected from our hospital (Cambridge, UK) and a random selection from hospitals in the East of England, enabling sample-to-sequence in less than 24 h. We established a weekly review and reporting system with integration of genomic and epidemiological data to investigate suspected health-care associated COVID-19 cases.
Findings
Between March 13 and April 24, 2020, we collected clinical data and samples from 5613 patients with COVID-19 from across the East of England. We sequenced 1000 samples producing 747 high-quality genomes. We combined epidemiological and genomic analysis of the 299 patients from our hospital and identified 35 clusters of identical viruses involving 159 patients. 92 (58%) of 159 patients had strong epidemiological links and 32 (20%) patients had plausible epidemiological links. These results were fed back to clinical, infection control, and hospital management teams, leading to infection-control interventions and informing patient safety reporting.
Interpretation
We established real-time genomic surveillance of SARS-CoV-2 in a UK hospital and showed the benefit of combined genomic and epidemiological analysis for the investigation of health-care associated COVID-19. This approach enabled us to detect cryptic transmission events and identify opportunities to target infection-control interventions to further reduce health-care associated infections. Our findings have important implications for national public health policy as they enable rapid tracking and investigation of infections in hospital and community settings.
Funding
COVID-19 Genomics UK (supported by UK Research and Innovation, the National Institute of Health Research, the Wellcome Sanger Institute), the Wellcome Trust, the Academy of Medical Sciences and the Health Foundation, and the National Institute for Health Research Cambridge Biomedical Research Centre.
A model of human prostate cancer was established to study cellular interaction between prostate cancer and bone stroma in vivo. In this model, subcutaneous co-injection of 2 non-tumorigenic human cell lines--LNCaP, a prostate cancer cell line, and MS, a bone stromal cell-line--into intact adult male mice resulted in formation of carcinomas that secreted prostate-specific antigen (PSA), a clinically useful human serum prostate cancer marker. In castrated hosts, upon cellular interaction with bone fibroblasts, we observed the progression of these tumors from an androgen-dependent (AD) to an androgen-independent state (AI). We derived 4 LNCaP cell sublines from the chimeric LNCaP/MS tumors: the M subline from intact hosts and the C4, C4-2 and C5 sublines from castrated hosts. The LNCaP sublines had chromosomal markers similar to those of the parental LNCaP cells and distinctly different from those of the MS bone stromal cell line. Although the parental and derived cell lines expressed similar steady-state levels of ornithine decarboxylase transcript, the sublines expressed 5- to 10-fold higher basal steady-state levels of PSA transcript than did the parental LNCaP cell line. The LNCaP sublines formed 13- to 26-fold more soft-agar colonies than the parental LNCaP cell line. The sublines became tumorigenic, yielding an incidence of tumors in intact athymic mice of 7-75%. The LNCaP sublines C4 and C5 (but not the parental and M cell line) formed tumors in castrated hosts when co-injected with bone fibroblasts. A second-generation LNCaP subline, C4-2, was derived from a chimeric tumor induced by co-inoculating castrated mouse with C4 cells and MS cells. We found that C4-2 subline was tumorigenic when inoculated into castrated hosts in the absence of inductive fibroblasts. Moreover, C4-2 was the only subline capable of forming soft-agar colonies when cultured in serum-free medium. In comparison with the parental LNCaP cells, the C4-2 subline expressed lower steady-state levels of androgen receptor (AR) protein and mRNA transcript and lost its androgen responsiveness in vitro. Our results suggest that certain genetic traits of prostate cancer cells may be selected or altered through an "adaptive" mechanism that involves cellular interaction with the bone stromal cells.
In mammalian cells, the replication of tissue-specific gene loci is believed to be under developmental control. Here, we provide direct evidence of the existence of developmentally regulated origins of replication in both cell lines and primary cells. By using single-molecule analysis of replicated DNA (SMARD), we identified various groups of coregulated origins that are activated within the Igh locus. These origin clusters can span hundreds of kilobases and are activated sequentially during B cell development, concomitantly with developmentally regulated changes in chromatin structure and transcriptional activity. Finally, we show that the changes in DNA replication initiation that take place during B cell development, within the D-J-C-3'RR region, occur on both alleles (expressed and nonexpressed).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.