This paper analyzes the dynamic spatial equilibrium of taxicabs and shows how common taxi regulations lead to substantial inefficiencies as a result of search frictions and misallocation. To analyze the role of regulation on frictions and efficiency, I pose a dynamic model of spatial search and matching between taxis and passengers. Using a comprehensive dataset of New York City yellow medallion taxis, I use this model to compute the equilibrium spatial distribution of vacant taxis and estimate intraday demand given price and medallion regulations. My estimates show that the weekday New York market achieves about $5.7 million in daily welfare or about $27 per trip, but an additional 53 thousand customers fail to find cabs due to search frictions. Counterfactual analysis shows that implementing simple tariff pricing changes can enhance allocative efficiency and expand the market, offering daily consumer surplus gains of up to $227 thousand and up to 49 thousand additional daily taxi-passenger matches, a similar magnitude to the gain in matches generated by adopting a perfect static matching technology.
We recover valuations of time using detailed data from a large ride-hail platform, where drivers bid on trips and consumers choose between a set of rides with different prices and waiting times. We estimate demand as a function of prices and waiting times and find that price elasticities are substantially higher than waiting-time elasticities. We show how these estimates can be mapped into values of time that vary by place, person, and time of day. We find that the value of time during non-work hours is 16%lower than during work hours. Most of the heterogeneity in the value of time, however, is explained by individual differences. We apply our estimates to study optimal time incentives in highway procurement. Standard industry practices, which set incentives based on a uniform value of time, lead to mis-priced time costs by up to ninety percent.
We consider the estimation of dynamic discrete choice models in a semiparametric setting, in which the per-period utility functions are known up to a finite number of parameters, but the distribution of utility shocks is left unspecified. This semiparametric setup differs from most of the existing identification and estimation literature for dynamic discrete choice models. To show identification we derive and exploit a new Bellman-like recursive representation for the unknown quantile function of the utility shocks. Our estimators are straightforward to compute; some are simple and require no iteration, and resemble classic estimators from the literature on semiparametric regression and average derivative estimation. Monte Carlo simulations demonstrate that our estimator performs well in small samples. To highlight features of this estimator, we estimate a structural model of dynamic labor supply for New York City taxicab drivers.
No abstract
ABSTRACT. We consider the estimation of dynamic discrete choice models in a semiparametric setting, in which the per-period utility functions are known up to a finite number of parameters, but the distribution of utility shocks is left unspecified. This semiparametric setup differs from most of the existing identification and estimation literature for dynamic discrete choice models. To show identification we derive and exploit a new Bellman-like recursive representation for the unknown quantile function of the utility shocks. Our estimators are straightforward to compute; some are simple and require no iteration, and resemble classic estimators from the literature on semiparametric regression and average derivative estimation. Monte Carlo simulations demonstrate that our estimator performs well in small samples. To highlight features of this estimator, we estimate a structural model of dynamic labor supply for New York City taxicab drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.