Merkel cells (MC) occur in the basal epidermal layer, hair follicles, and oral mucosa, as complexes with sensory axons. The axons transduce slowly adapting type I mechanoreception, and MC modulate their sensitivity. MC also determine and maintain the 3-dimensional epidermal structure. They have neuroendocrine granules, rigid spinous processes, and desmosomal junctions with each other and with keratinocytes. Rare MC are dermaWl. Current evidence supports a basal cell origin. Merkel cell carcinomas (MCC) occur mostly in sun-exposed skin in old age. Trabecular, intermediate, or small cell in pattern, MCC have neuroendocrine granules, intercellular junctions, rigid spinous processes, and a paranuclear collection of intermediate filaments staining for cytokeratin 20. Most MCC behave indolently, but those with the small cell pattern, and some with the intermediate pattern, are aggressive and rapidly fatal.
In rat ileum and colon, apical membrane Cl(-)/HCO(3)(-) exchange and net Cl(-) absorption are stimulated by increases in Pco(2) or [HCO(3)(-)]. Because changes in Pco(2) stimulate colonic Na(+) absorption, in part, by modulating vesicular trafficking of the Na(+)/H(+) exchanger type 3 isoform to and from the apical membrane, we examined whether changes in Pco(2) affect net Cl(-) absorption by modulating vesicular trafficking of the Cl(-)/HCO(3)(-) exchanger anion exchanger (AE)1. Cl(-) transport across rat distal ileum and colon was measured in the Ussing chamber, and apical membrane protein biotinylation of these segments and Western blots of recovered proteins were performed. In colonic epithelial apical membranes, AE1 protein content was greater at Pco(2) 70 mmHg than at Pco(2) 21 mmHg but was not affected by pH changes in the absence of CO(2). AE1 was internalized when Pco(2) was reduced and exocytosed when Pco(2) was increased, and both mucosal wortmannin and methazolamide inhibited exocytosis. Wortmannin also inhibited the increase in colonic Cl(-) absorption caused by an increase in Pco(2). Increases in Pco(2) stimulated ileal Cl(-) absorption, but wortmannin was without effect. Ileal epithelial apical membrane AE1 content was not affected by Pco(2). We conclude that CO(2) modulation of colonic, but not ileal, Cl(-) absorption involves effects on vesicular trafficking of AE1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.