Subprotoplasts prepared from different regions of rhizoid and thallus cells of Fucus zygotes displayed mechanosensitive plasma membrane channels in cell-attached patch-clamp experiments by using laser microsurgery. In excised patches, this channel was found to be voltage gated, carrying K+ outward and Ca2+ inward, with a relative permeability of Ca2+/K+ of 0.35 to 0.5, and an increased open probability at membrane potentials more positive than -80 mV. No significant difference was found in the density of this channel type from different regions of rhizoid or thallus cells. Hypoosmotic treatment of intact zygotes induced dramatic transient elevations of cytoplasmic Ca2+, initiating at the rhizoid apex and propagating in a wavelike manner to subapical regions. Localized initiation of the Ca2+ transient correlated with greater osmotic swelling at the rhizoid apex compared with other regions of the zygote. Ca2+ transients exhibited a refractory period between successive hypoosmotic shocks, during which additional transients could not be elicited and the ability to osmoregulate was impaired. Buffering the Ca2+ transients with microinjected Br2BAPTA similarly reduced the ability of rhizoid cells to osmoregulate. Ca2+ influx was associated with the initiation of the Ca2+ transient in apical regions, whereas intracellular sources contributed to its propagation. Thus, localized signal transduction is patterned by interactions of the cell wall, plasma membrane, and intracellular Ca2+ stores.
Subprotoplasts prepared from different regions of rhizoid and thallus cells of Fucus zygotes displayed mechanosensitive plasma membrane channels in cell-attached patch-clamp experiments by using laser microsurgery. In excised patches, this channel was found to be voltage gated, carrying K+ outward and Ca2+ inward, with a relative permeability of Ca2+/K+ of 0.35 to 0.5, and an increased open probability at membrane potentials more positive than -80 mV. No significant difference was found in the density of this channel type from different regions of rhizoid or thallus cells. Hypoosmotic treatment of intact zygotes induced dramatic transient elevations of cytoplasmic Ca2+, initiating at the rhizoid apex and propagating in a wavelike manner to subapical regions. Localized initiation of the Ca2+ transient correlated with greater osmotic swelling at the rhizoid apex compared with other regions of the zygote. Ca2+ transients exhibited a refractory period between successive hypoosmotic shocks, during which additional transients could not be elicited and the ability to osmoregulate was impaired. Buffering the Ca2+ transients with microinjected Br2BAPTA similarly reduced the ability of rhizoid cells to osmoregulate. Ca2+ influx was associated with the initiation of the Ca2+ transient in apical regions, whereas intracellular sources contributed to its propagation. Thus, localized signal transduction is patterned by interactions of the cell wall, plasma membrane, and intracellular Ca2+ stores.
Polarized zygotes of the marine alga Fucus have been used to investigate the spatial control of Ca(2+) signals in a plant cell during apical growth and cell volume regulation in response to external osmotic fluctuations. UV laser microsurgery has been refined to enable plasma membrane patch clamp recordings from localized regions of the polarizing or polarized zygote. A plasma membrane cation channel that is mechanosensitive and significantly permeable to Ca(2+) was characterized in cell-attached and excised patch configurations. Parallel measurements of intracellular Ca(2+) using ratio photometric and imaging techniques were used to monitor temporal and spatial changes in cytoplasmic Ca(2+) (Ca(2+)(cyt)) in response to activation of these ion channels by osmotic swelling of the rhizoid. In polarized rhizoid cells spatial regulation of voltage- and mechanosensitive-Ca(2+) channels in the plasma membrane underlie changes in Ca(2+) that are crucial in signal-response transduction. Direct mechanical stimulation of channels in the plasma membrane of isolated sub-protoplasts from the apex of rhizoid cells can elicit changes in Ca(2+) in the underlying cytosol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.