The developing brain undergoes drastic alterations. Here, we investigated developmental changes in the habenula, a brain region that mediates behavioral flexibility during learning, social interactions, and aversive experiences. We showed that developing habenular circuits exhibit multiple alterations that lead to an increase in the structural and functional diversity of cell types, inputs, and functional modules. As the habenula develops, it sequentially transforms into a multisensory brain region that can process visual, olfactory, mechanosensory, and aversive stimuli. Moreover, we observed that the habenular neurons display spatiotemporally structured spontaneous activity that shows prominent alterations and refinement with age. These alterations in habenular activity are accompanied by sequential neurogenesis and the integration of distinct neural clusters across development. Last, we revealed that habenular neurons with distinct functional properties are born sequentially at distinct developmental time windows. Our results highlight a strong link between the functional properties of habenular neurons and their precise birthdate.
Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. However, the cellular and spatial organization of interhemispheric networks and the computational properties they mediate in vertebrates are still poorly understood. Thus, it remains unclear to what extent the connectivity between left and right brain hemispheres participates in sensory processing. Here, we show that the zebrafish olfactory bulbs (OBs) receive direct interhemispheric projections from their contralateral counterparts in addition to top-down inputs from the contralateral zebrafish homolog of olfactory cortex. The direct interhemispheric projections between the OBs reach peripheral layers of the contralateral OB and retain a precise topographic organization, which directly connects similarly tuned olfactory glomeruli across hemispheres. In contrast, interhemispheric top-down inputs consist of diffuse projections that broadly innervate the inhibitory granule cell layer. Jointly, these interhemispheric connections elicit a balance of topographically organized excitation and nontopographic inhibition on the contralateral OB and modulate odor responses. We show that the interhemispheric connections in the olfactory system enable the modulation of odor response and contribute to a small but significant improvement in the detection of a reproductive pheromone when presented together with complex olfactory cues by potentiating the response of the pheromone selective neurons. Taken together, our data show a previously unknown function for an interhemispheric connection between chemosensory maps of the olfactory system.
Exposure to ethanol during the last trimester equivalent of human pregnancy causes apoptotic neurodegeneration in the developing brain, an effect that is thought to be mediated, in part, by inhibition of NMDA receptors. However, NMDA receptors can rapidly adapt to the acute effects of ethanol and are ethanol resistant in some populations of developing neurons. Here, we characterized the effect of ethanol on NMDA and non-NMDA receptor-mediated synaptic transmission in the retrosplenial cortex (RSC), a brain region involved in the integration of different modalities of spatial information that is among the most sensitive regions to ethanolinduced neurodegeneration. A single four-hour exposure to ethanol vapor of 7-day-old transgenic mice that express the Venus fluorescent protein in interneurons triggered extensive apoptosis in the RSC. Slice electrophysiological recordings showed that bath-applied ethanol inhibits NMDA and non-NMDA receptor excitatory postsynaptic currents (EPSCs) in pyramidal neurons and interneurons; however, we found no evidence of acute tolerance development to this effect after the four-hour in-vivo ethanol vapor exposure. Acute bath application of ethanol reduced action potential firing evoked by synaptic stimulation to a greater extent in pyramidal neurons than interneurons. Submaximal inhibition of NMDA EPSCs, but not non-NMDA EPSCs, mimicked the acute effect of ethanol on synaptically-evoked action potential firing. These findings indicate that partial inhibition of NMDA receptors by ethanol has sizable effects on the excitability of glutamatergic and GABAergic neurons in the developing RSC, and suggest that positive allosteric modulators of these receptors could ameliorate ethanol intoxication-induced neurodegeneration during late stages of fetal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.