Knowledge of the incubation period is essential in the investigation and control of infectious disease, but statements of incubation period are often poorly referenced, inconsistent, or based on limited data. In a systematic review of the literature on nine respiratory viral infections of public-health importance, we identified 436 articles with statements of incubation period and 38 with data for pooled analysis. We fitted a log-normal distribution to pooled data and found the median incubation period to be 5·6 days (95% CI 4·8–6·3) for adenovirus, 3·2 days (95% CI 2·8–3·7) for human coronavirus, 4·0 days (95% CI 3·6–4·4) for severe acute respiratory syndrome coronavirus, 1·4 days (95% CI 1·3–1·5) for influenza A, 0·6 days (95% CI 0·5–0·6) for influenza B, 12·5 days (95% CI 11·8–13·3) for measles, 2·6 days (95% CI 2·1–3·1) for parainfluenza, 4·4 days (95% CI 3·9–4·9) for respiratory syncytial virus, and 1·9 days (95% CI 1·4–2·4) for rhinovirus. When using the incubation period, it is important to consider its full distribution: the right tail for quarantine policy, the central regions for likely times and sources of infection, and the full distribution for models used in pandemic planning. Our estimates combine published data to give the detail necessary for these and other applications.
IMPORTANCE Efforts to track the severity and public health impact of coronavirus disease 2019 (COVID-19) in the United States have been hampered by state-level differences in diagnostic test availability, differing strategies for prioritization of individuals for testing, and delays between testing and reporting. Evaluating unexplained increases in deaths due to all causes or attributed to nonspecific outcomes, such as pneumonia and influenza, can provide a more complete picture of the burden of COVID-19. OBJECTIVE To estimate the burden of all deaths related to COVID-19 in the United States from March to May 2020. DESIGN, SETTING, AND POPULATION This observational study evaluated the numbers of US deaths from any cause and deaths from pneumonia, influenza, and/or COVID-19 from March 1 through May 30, 2020, using public data of the entire US population from the National Center for Health Statistics (NCHS). These numbers were compared with those from the same period of previous years. All data analyzed were accessed on June 12, 2020. MAIN OUTCOMES AND MEASURES Increases in weekly deaths due to any cause or deaths due to pneumonia/influenza/COVID-19 above a baseline, which was adjusted for time of year, influenza activity, and reporting delays. These estimates were compared with reported deaths attributed to COVID-19 and with testing data. RESULTS There were approximately 781 000 total deaths in the United States from March 1 to May 30, 2020, representing 122 300 (95% prediction interval, 116 800-127 000) more deaths than would typically be expected at that time of year. There were 95 235 reported deaths officially attributed to COVID-19 from March 1 to May 30, 2020. The number of excess all-cause deaths was 28% higher than the official tally of COVID-19-reported deaths during that period. In several states, these deaths occurred before increases in the availability of COVID-19 diagnostic tests and were not counted in official COVID-19 death records. There was substantial variability between states in the difference between official COVID-19 deaths and the estimated burden of excess deaths. CONCLUSIONS AND RELEVANCE Excess deaths provide an estimate of the full COVID-19 burden and indicate that official tallies likely undercount deaths due to the virus. The mortality burden and the completeness of the tallies vary markedly between states.
IMPORTANCE Clinical studies have been inconclusive about the effectiveness of N95 respirators and medical masks in preventing health care personnel (HCP) from acquiring workplace viral respiratory infections.OBJECTIVE To compare the effect of N95 respirators vs medical masks for prevention of influenza and other viral respiratory infections among HCP. DESIGN, SETTING, AND PARTICIPANTSA cluster randomized pragmatic effectiveness study conducted at 137 outpatient study sites at 7 US medical centers between September 2011 and May 2015, with final follow-up in June 2016. Each year for 4 years, during the 12-week period of peak viral respiratory illness, pairs of outpatient sites (clusters) within each center were matched and randomly assigned to the N95 respirator or medical mask groups.INTERVENTIONS Overall, 1993 participants in 189 clusters were randomly assigned to wear N95 respirators (2512 HCP-seasons of observation) and 2058 in 191 clusters were randomly assigned to wear medical masks (2668 HCP-seasons) when near patients with respiratory illness. MAIN OUTCOMES AND MEASURESThe primary outcome was the incidence of laboratory-confirmed influenza. Secondary outcomes included incidence of acute respiratory illness, laboratory-detected respiratory infections, laboratory-confirmed respiratory illness, and influenzalike illness. Adherence to interventions was assessed.RESULTS Among 2862 randomized participants (mean [SD] age, 43 [11.5] years; 2369 [82.8%]) women), 2371 completed the study and accounted for 5180 HCP-seasons. There were 207 laboratory-confirmed influenza infection events (8.2% of HCP-seasons) in the N95 respirator group and 193 (7.2% of HCP-seasons) in the medical mask group (difference, 1.0%, [95% CI, −0.5% to 2.5%]; P = .18) (adjusted odds ratio [OR], 1.18 [95% CI, 0.95-1.45]). There were 1556 acute respiratory illness events in the respirator group vs 1711 in the mask group (difference, −21.9 per 1000 HCP-seasons [95% CI, −48.2 to 4.4]; P = .10); 679 laboratory-detected respiratory infections in the respirator group vs 745 in the mask group (difference, −8.9 per 1000 HCP-seasons, [95% CI, −33.3 to 15.4]; P = .47); 371 laboratory-confirmed respiratory illness events in the respirator group vs 417 in the mask group (difference, −8.6 per 1000 HCP-seasons [95% CI, −28.2 to 10.9]; P = .39); and 128 influenzalike illness events in the respirator group vs 166 in the mask group (difference, −11.3 per 1000 HCP-seasons [95% CI, −23.8 to 1.3]; P = .08). In the respirator group, 89.4% of participants reported "always" or "sometimes" wearing their assigned devices vs 90.2% in the mask group.CONCLUSIONS AND RELEVANCE Among outpatient health care personnel, N95 respirators vs medical masks as worn by participants in this trial resulted in no significant difference in the incidence of laboratory-confirmed influenza.
Dengue, a mosquito-borne virus of humans, infects over 50 million people annually. Infection with any of the four dengue serotypes induces protective immunity to that serotype, but does not confer long-term protection against infection by other serotypes. The immunological interactions between serotypes are of central importance in understanding epidemiological dynamics and anticipating the impact of dengue vaccines. We analysed a 38-year time series with 12 197 serotyped dengue infections from a hospital in Bangkok, Thailand. Using novel mechanistic models to represent different hypothesized immune interactions between serotypes, we found strong evidence that infection with dengue provides substantial short-term cross-protection against other serotypes (approx. 1–3 years). This is the first quantitative evidence that short-term cross-protection exists since human experimental infection studies performed in the 1950s. These findings will impact strategies for designing dengue vaccine studies, future multi-strain modelling efforts, and our understanding of evolutionary pressures in multi-strain disease systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.