We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550−5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550−5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550−5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of −0.92, close to the OTTB index of −1. We show that there is an anti-correlation between the Comptonized E peak and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the hightemperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.
We report on time-resolved spectroscopy of the 63 brightest bursts of SGR J1550-5418, detected with Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms time-scales, to characterize the spectral evolution of the bursts. Using a Comptonized model, we find that the peak energy, E peak , anti-correlates with flux, while the low-energy photon index remains constant at ∼ −0.8 up to a flux limit F ≈ 10 −5 erg s −1 cm −2 . Above this flux value the E peak −flux correlation changes sign, and the index positively correlates with flux reaching ∼1 at the highest fluxes. Using a two black-body model, we find that the areas and fluxes of the two emitting regions correlate positively. Further, we study here for the first time, the evolution of the temperatures and areas as a function of flux. We find that the area−kT relation follows lines of constant luminosity at the lowest fluxes, R 2 ∝ kT −4 , with a break at higher fluxes (F > 10 −5.5 erg s −1 cm −2 ). The area of the high−kT component increases with flux while its temperature decreases, which we interpret as due to an adiabatic cooling process. The area of the low−kT component, on the other hand, appears to saturate at the highest fluxes, towards R max ≈ 30 km. Assuming that crust quakes are responsible for SGR bursts and considering R max as the maximum radius of the emitting photon-pair plasma fireball, we relate this saturation radius to a minimum excitation radius of the magnetosphere, and put a lower limit on the internal magnetic field of SGR J1550-5418, B int 4.5 × 10 15 G.
MAXI J1621-501 is the first Swift/XRT Deep Galactic Plane Survey transient that was followed up with a multitude of space missions (NuSTAR, Swift, Chandra, NICER, INTEGRAL, and MAXI) and ground-based observatories (Gemini, IRSF, and ATCA). The source was discovered with MAXI on 2017 October 19 as a new, unidentified transient. Further observations with NuSTAR revealed 2 Type I X-ray bursts, identifying MAXI J1621-501 as a Low Mass X-ray Binary (LMXB) with a neutron star primary. Overall, 24 Type I bursts were detected from the source during a 15 month period. At energies below 10 keV, the source spectrum was best fit with three components: an absorbed blackbody with kT = 2.3 keV, a cutoff power law with index Γ = 0.7, and an emission line centered on 6.3 keV. Timing analysis of the X-ray persistent emission and burst data has not revealed coherent pulsations from the source or an orbital period. We identified, however, a super-orbital period ∼ 78 days in the source X-ray light curve. This period agrees very well with the theoretically predicted radiative precession period of ∼ 82 days. Thus, MAXI J1621-501 joins a small group of sources characterized with super-orbital periods.
We report on observations of the candidate Be/X-ray binary (BeXRB) IGR J18219−1347 with the Swift/X-ray Telescope, the Nuclear Spectroscopic Telescope ARray, and the Neutron Star Interior Composition Explorer during Type-I outbursts in 2020 March and June. Our timing analysis revealed the spin period of a neutron star with P spin = 52.46 s. This periodicity, combined with the known orbital period of 72.4 days, indicates that the system is a BeXRB. Furthermore, by comparing the spectral energy distribution of the infrared counterpart to that of known BeXRBs, we confirm this classification and set a distance of approximately 10–15 kpc for the source. The broadband X-ray spectrum (1.5–50 keV) of the source is described by an absorbed power law with a photon index Γ ∼ 0.5 and a cutoff energy at ∼13 keV.
We report on the Swift/XRT Deep Galactic Plane Survey discovery and multiwavelength follow-up observations of a new intermediate polar (IP) cataclysmic variable, Swift J183920.1-045350. A 449.7 s spin period is found in XMM-Newton and NuSTAR data, accompanied by a 459.9 s optical period that is most likely the synodic, or beat period, produced from a 5.6 hr orbital period. The orbital period is seen with moderate significance in independent long-baseline optical photometry observations taken with the ZTF and SAAO telescopes. We find that the X-ray pulse fraction of the source decreases with increasing energy. The X-ray spectra are consistent with the presence of an Fe emission line complex with both local and interstellar absorption. In the optical spectra, strong Hα, H i, He i, and He ii emission lines are observed, all common features in magnetic CVs. The source properties are thus typical of known IPs, with the exception of its estimated distance of 2.26 − 0.83 + 1.93 kpc, which is larger than typical, extending the reach of the CV population in our Galaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.