Summary Currently there are no approved vaccines or specific therapies to prevent or treat Zika virus (ZIKV) infection. We interrogated a library of FDA-approved drugs for their ability to block infection of human HuH-7 cells by a newly isolated ZIKV strain (ZIKV MEX_I_7). More than 20 out of 774 tested compounds decreased ZIKV infection in our in vitro screening assay. Selected compounds were further validated for inhibition of ZIKV infection in human cervical, placental and neural stem cell lines, as well as primary human amnion cells. Established anti-flaviviral drugs (e.g., bortezomib and mycophenolic acid) and others that had no previously known anti-viral activity (e.g., daptomycin) were identified as inhibitors of ZIKV infection. Several drugs reduced ZIKV infection across multiple cell types. This study identifies drugs that could be tested in clinical studies of ZIKV infection and provides a resource of small molecules to study ZIKV pathogenesis.
Dengue fever (DF) is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection1. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make DF a global public health threat1, 2. Given their compact genomes, dengue viruses (DENV 1-4) and other flaviviruses likely require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors have been identified3-10. To discover insect host factors required for DENV-2 propagation, we carried out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 dsRNA library. This screen identified 116 candidate dengue virus host factors (DVHFs) (Supplementary Fig. 1). While some were previously associated with flaviviruses (e.g., V-ATPases and alpha-glucosidases)3-5, 7, 9, 10, most DVHFs were newly implicated in DENV propagation. The dipteran DVHFs had eighty-two readily recognizable human homologues and, using a targeted siRNA screen, we showed that forty-two of these are human DVHFs. This indicates remarkable conservation of required factors between dipteran and human hosts. This work suggests novel approaches to control infection in the insect vector and the mammalian host.
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA–protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.