Summary Currently there are no approved vaccines or specific therapies to prevent or treat Zika virus (ZIKV) infection. We interrogated a library of FDA-approved drugs for their ability to block infection of human HuH-7 cells by a newly isolated ZIKV strain (ZIKV MEX_I_7). More than 20 out of 774 tested compounds decreased ZIKV infection in our in vitro screening assay. Selected compounds were further validated for inhibition of ZIKV infection in human cervical, placental and neural stem cell lines, as well as primary human amnion cells. Established anti-flaviviral drugs (e.g., bortezomib and mycophenolic acid) and others that had no previously known anti-viral activity (e.g., daptomycin) were identified as inhibitors of ZIKV infection. Several drugs reduced ZIKV infection across multiple cell types. This study identifies drugs that could be tested in clinical studies of ZIKV infection and provides a resource of small molecules to study ZIKV pathogenesis.
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA–protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
BackgroundDespite the fact that smallpox eradication was declared by the World Health Organization (WHO) in 1980, other poxviruses have emerged and re-emerged, with significant public health and economic impacts. Vaccinia virus (VACV), a poxvirus used during the WHO smallpox vaccination campaign, has been involved in zoonotic infections in Brazilian rural areas (Bovine Vaccinia outbreaks – BV), affecting dairy cattle and milkers. Little is known about VACV's natural hosts and its epidemiological and ecological characteristics. Although VACV was isolated and/or serologically detected in Brazilian wild animals, the link between wildlife and farms has not yet been elucidated.Methodology/Principal FindingsIn this study, we describe for the first time, to our knowledge, the isolation of a VACV (Mariana virus - MARV) from a mouse during a BV outbreak. Genetic data, in association with biological assays, showed that this isolate was the same etiological agent causing exanthematic lesions observed in the cattle and human inhabitants of a particular BV-affected area. Phylogenetic analysis grouped MARV with other VACV isolated during BV outbreaks.Conclusion/SignificanceThese data provide new biological and epidemiological information on VACV and lead to an interesting question: could peridomestic rodents be the link between wildlife and BV outbreaks?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.