Kinesin-12 motors are a little studied branch of the kinesin superfamily with the human protein (Kif15) implicated in spindle mechanics and chromosome movement. In this study, we reconstitute full-length hKif15 and its microtubule-targeting factor hTpx2 in vitro to gain insight into the motors mode of operation. We reveal that hKif15 is a plus-end-directed processive homotetramer that can step against loads of up to 3.5 pN. We further show that hKif15 is the first kinesin that effectively switches microtubule tracks at intersections, enabling it to navigate microtubule networks, such as the spindle. hKif15 tetramers are also capable of cross-linking microtubules, but unexpectedly, this does not depend on hTpx2. Instead, we find that hTpx2 inhibits hKif15 stepping when microtubule-bound. Our data reveal that hKif15 is a second tetrameric spindle motor in addition to the kinesin-5 Eg5 and provides insight into the mechanisms by which hKif15 and its inhibitor hTpx2 modulate spindle microtubule architecture.DOI: http://dx.doi.org/10.7554/eLife.01724.001
Transport of proteins and lipids from one membrane compartment to another is via intracellular vesicles. We investigated the function of tumor protein D54 (TPD54/TPD52L2) and found that TPD54 was involved in multiple membrane trafficking pathways: anterograde traffic, recycling, and Golgi integrity. To understand how TPD54 controls these diverse functions, we used an inducible method to reroute TPD54 to mitochondria. Surprisingly, this manipulation resulted in the capture of many small vesicles (30 nm diameter) at the mitochondrial surface. Super-resolution imaging confirmed the presence of similarly sized TPD54-positive structures under normal conditions. It appears that TPD54 defines a new class of transport vesicle, which we term intracellular nanovesicles (INVs). INVs meet three criteria for functionality. They contain specific cargo, they have certain R-SNAREs for fusion, and they are endowed with a variety of Rab GTPases (16 out of 43 tested). The molecular heterogeneity of INVs and the diverse functions of TPD54 suggest that INVs have various membrane origins and a number of destinations. We propose that INVs are a generic class of transport vesicle that transfer cargo between these varied locations.
Clathrin-mediated endocytosis (CME) is the major internalisation route for many different receptor types in mammalian cells. CME is shut down during early mitosis, but the mechanism of this inhibition is unclear. In this study, we show that the mitotic shutdown is due to an unmet requirement for actin in CME. In mitotic cells, membrane tension is increased and this invokes a requirement for the actin cytoskeleton to assist the CME machinery to overcome the increased load. However, the actin cytoskeleton is engaged in the formation of a rigid cortex in mitotic cells and is therefore unavailable for deployment. We demonstrate that CME can be ‘restarted’ in mitotic cells despite high membrane tension, by allowing actin to engage in endocytosis. Mitotic phosphorylation of endocytic proteins is maintained in mitotic cells with restored CME, indicating that direct phosphorylation of the CME machinery does not account for shutdown.DOI: http://dx.doi.org/10.7554/eLife.00829.001
Kinesin-1 is an ATP-driven molecular motor that transports cellular cargo along microtubules. At low loads, kinesin-1 almost always steps forward, toward microtubule plus ends, but at higher loads, it can also step backward. Backsteps are usually 8 nm but can be larger. These larger backward events of 16 nm, 24 nm, or more are thought to be slips rather than steps because they are too fast to consist of multiple, tightly coupled 8-nm steps. Here, we propose that not only these larger backsteps, but all kinesin-1 backsteps, are slips. We show first that kinesin waits before forward steps for less time than before backsteps and detachments; second, we show that kinesin waits for the same amount of time before backsteps and detachments; and third, we show that by varying the microtubule type, we can change the ratio of backsteps to detachments without affecting forward stepping. Our findings indicate that backsteps and detachments originate from the same state and that this state arises later in the mechanochemical cycle than the state that gives rise to forward steps. To explain our data, we propose that, in each cycle of ATP turnover, forward kinesin steps can only occur before Pi release, whereas backslips and detachments can only occur after Pi release. In the scheme we propose, Pi release gates access to a weak binding K,ADP-K,ADP state that can slip back along the microtubule, re-engage, release ADP, and try again to take an ATP-driven forward step. We predict that this rescued detachment pathway is key to maintaining kinesin processivity under load. MATERIALS AND METHODS Kinesin beadsUnmodified 560-nm-diameter polystyrene beads (Polysciences, Warrington, PA) were mixed with purified recombinant full-length Drosophila
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.