The reaction of HOR' (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide) with an iron(II) amide precursor forms the iron(II) bis(alkoxide) complex Fe(OR')(THF) (2). 2 (5-10 mol %) serves as a catalyst for the conversion of aryl azides into the corresponding azoarenes. The highest yields are observed for aryl azides featuring two ortho substituents; other substitution patterns in the aryl azide precursor lead to moderate or low yields. The reaction of 2 with stoichiometric amounts (2 equiv) of the corresponding aryl azide shows the formation of azoarenes as the only organic products for the bulkier aryl azides (Ar = mesityl, 2,6-diethylphenyl). In contrast, formation of tetrazene complexes Fe(OR')(ArNNNNAr) (3-6) is observed for the less bulky aryl azides (Ar = phenyl, 4-methylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl). The electronic structure of selected tetrazene complexes was probed by spectroscopy (field-dependent Fe Mössbauer and high-frequency EPR) and density functional theory calculations. These studies revealed that Fe(OR')(ArNNNNAr) complexes contain high-spin ( S = 5/2) iron(III) centers exchange-coupled to tetrazene radical anions. Tetrazene complexes Fe(OR')(ArNNNNAr) produce the corresponding azoarenes (ArNNAr) upon heating. Treatment of a tetrazene complex Fe(OR')(ArNNNNAr) with a different azide (NAr') produces all three possible products ArNNAr, ArNNAr', and Ar'NNAr'. These experiments and quantum mechanics/molecular mechanics calculations exploring the reaction mechanism suggest that the tetrazene functionality serves as a masked form of the reactive iron mono(imido) species.
Cyanotoxins called microcystins (MCs) are highly toxic and can be present in drinking water sources. Determining the structure of MCs is paramount because of its effect on toxicity. Though over 300 MC congeners have been discovered, many remain unidentified. Herein, a method is described for the putative identification of MCs using liquid chromatography (LC) coupled with high-resolution (HR) Orbitrap mass spectrometry (MS) and a new bottom-up sequencing strategy. Maumee River water samples were collected during a harmful algal bloom and analyzed by LC−MS with simultaneous HRMS and MS/ MS. Unidentified ions with characteristic MC fragments (135 and 213 m/z) were recognized as possible novel MC congeners. An innovative workflow was developed for the putative identification of these ions. Python code was written to generate the potential structures of unidentified MCs and to assign ions after the fragmentation for structural confirmation. The workflow enabled the putative identification of eight previously reported MCs for which standards are not available and two newly discovered congeners, MC-HarR and MC-E(OMe)R.
In this article we describe extensive studies of the catalytic asymmetric heterodimerization of ketenes to give ketene heterodimer β-lactones. The optimal catalytic system was determined to be a cinchona alkaloid derivative (TMS-quinine or Me-quinidine). The desired ketene heterodimer β-lactones were obtained in good to excellent yields (up to 90%), with excellent levels of enantioselectivity (≥90% ee for 33 Z- and E-isomer examples), good to excellent Z-olefin isomer selectivity (≥90:10 for 20 examples), and with excellent regioselectivity (only one regioisomer formed). Full details of catalyst development studies, catalyst loading investigations, substrate scope exploration, protocol innovations (including double in situ ketene generation for 7 examples), and an application to a cinnabaramide A intermediate are described. The addition of lithium perchlorate (1-2 equiv) as an additive to the alkaloid catalyst system was found to favor formation of the E-isomer of the ketene heterodimer. 10 examples were formed with moderate to excellent E-olefin isomer selectivity (74:25 to 97:3) and with excellent enantioselectivity (84-98% ee).
In this paper, a novel approach to γ-lactones from the reaction of sulfoxonium ylides, aldehydes, and ketenes is described. The new ylide-based method provides access to γ-lactones from disubstituted ketenes, in good yields, and with good diastereoselectivity favoring the trans-diastereomer (11 examples with dr ≥ 82:18, dr up to 92:8).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.