Thermal control is crucial to real-time systems as excessive processor temperature can cause system failure or unacceptable performance degradation due to hardware throttling. Real-time systems face significant challenges in thermal management as they must avoid processor overheating while still delivering desired real-time performance. Furthermore, many real-time systems must handle a broad range of uncertainties in system and environmental conditions. To address these challenges, this paper presents Thermal Control under Utilization Bound (TCUB), a novel thermal control algorithm specifically designed for real-time systems. TCUB employs a feedback control loop that dynamically controls both processor temperature and CPU utilization through task rate adaptation. Rigorously modeled and designed based on control theory, TCUB can maintain both desired processor temperature and CPU utilization, thereby avoiding processor overheating and maintaining desired real-time performance. A salient feature of TCUB lies in its capability to handle a broad range of uncertainties in terms of processor power consumption, task execution times, ambient temperature, and unexpected thermal faults. The robustness of TCUB makes it particularly suitable for real-time embedded systems that must operate in highly unpredictable and hash environments. The advantages of TCUB have been demonstrated through extensive simulations under a broad range of system and environmental uncertainties.
This paper provides a framework to synthesize l 2 -stable networks in which the controller and plant can be subject to delays and data dropouts. This framework can be applied to control systems which use "soft-real-time" cooperative schedulers as well as those which use wired and wireless network feedback. The approach applies to passive plants and controllers that can be either linear, nonlinear, and (or) time-varying. This framework is based on fundamental results presented here related to passive control and scattering theory which are used to design passive force-feedback telemanipulation systems. Theorem 3 states how a (non)linear (strictly input or strictly output) passive plant can be transformed to a discrete (strictly input) passive plant using a particular digital sampling and hold scheme. Furthermore, Theorem 4(5) provide new sufficient conditions for l 2 (and L 2 )-stability in which a strictlyoutput passive controller and plant are interconnected with only wave-variables. Lemma 2 shows it is sufficient to use discrete wave-variables when data is subject to fixed time delays and dropouts in order to maintain passivity. Lemma 3 shows how to safely handle time varying discrete wave-variable data in order to maintain passivity. We then present a new cooperative scheduler algorithm to implement a l 2 -stable control network. We also provide an illustrative simulated example followed by a discussion of future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.