We are the first to utilize reduced graphene oxide (RGO) wrapped metal organic framework-derived FeS2 hollow nanocages (FeS2@RGO) as an anode for K-ion batteries.
Self‐powered photodetectors (PDs) based on inorganic metal halide perovskites are regarded as promising alternatives for the next generation of photodetectors. However, uncontrollable film growth and sluggish charge extraction at interfaces directly limit the sensitivity and response speed of perovskite‐based photodetectors. Herein, by assistance of an atomic layer deposition (ALD) technique, CsPbBr3 perovskite thin films with preferred orientation and enlarged grain size are obtained on predeposited interfacial modification layers. Thanks to improved film quality and double side interfacial engineering, the optimized CsPbBr3 (Al2O3/CsPbBr3/TiO2, ACT) perovskite PDs exhibit outstanding performance with ultralow dark current of 10−11 A, high detectivity of 1.88 × 1013 Jones and broad linear dynamic range (LDR) of 172.7 dB. Significantly, excellent long‐term environmental stability (ambient conditions >100 d) and flexibility stability (>3000 cycles) are also achieved. The remarkable performance is credited to the synergistic effects of high carrier conductivity and collection efficiency, which is assisted by ALD modification layers. Finally, the ACT PDs are successfully integrated into a visible light communication system as a light receiver on transmitting texts, showing a bit rate as high as 100 kbps. These results open the window of high performance all‐inorganic halide perovskite photodetectors and extends to rational applications for optical communication.
Thermal control is crucial to real-time systems as excessive processor temperature can cause system failure or unacceptable performance degradation due to hardware throttling. Real-time systems face significant challenges in thermal management as they must avoid processor overheating while still delivering desired real-time performance. Furthermore, many real-time systems must handle a broad range of uncertainties in system and environmental conditions. To address these challenges, this paper presents Thermal Control under Utilization Bound (TCUB), a novel thermal control algorithm specifically designed for real-time systems. TCUB employs a feedback control loop that dynamically controls both processor temperature and CPU utilization through task rate adaptation. Rigorously modeled and designed based on control theory, TCUB can maintain both desired processor temperature and CPU utilization, thereby avoiding processor overheating and maintaining desired real-time performance. A salient feature of TCUB lies in its capability to handle a broad range of uncertainties in terms of processor power consumption, task execution times, ambient temperature, and unexpected thermal faults. The robustness of TCUB makes it particularly suitable for real-time embedded systems that must operate in highly unpredictable and hash environments. The advantages of TCUB have been demonstrated through extensive simulations under a broad range of system and environmental uncertainties.
It is expected from existing theories that the core level of Si nanocrystals (nc-Si) embedded in a SiO2 matrix
should shift toward a higher binding energy as compared to that of bulk crystalline Si due to quantum size
effect. Indeed, it is observed in X-ray photoemission experiments that the Si 2p core level shifts to a higher
apparent binding energy by 1−2 eV for all five oxidation states of Si
n
+ (n = 0, 1, 2, 3, and 4) in the material
system of SiO2 containing nc-Si. However, it is found that the core-level shift is due to a charging effect in
the material system. After correction for the charging effect by using C 1s binding energy due to contamination
on the SiO2 surface, the core level of the oxidation state Si4+ is the same as that of pure SiO2, whereas the
core level of the isolated nc-Si with an average size of about 3 nm shifts by ∼ 0.6 eV to a lower binding
energy as compared to that of bulk crystalline Si. It is suspected that the core-level shift of the nc-Si toward
a lower binding energy is due to the influence of the differential charging between the SiO2 surface layer and
the nc-Si underneath.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.