BackgroundLipids are ubiquitous and serve numerous biological functions; thus lipids have been shown to have great potential as candidates for elucidating biomarkers and pathway perturbations associated with disease. Methods expanding coverage of the lipidome increase the likelihood of biomarker discovery and could lead to more comprehensive understanding of disease etiology.ResultsWe introduce LipidMatch, an R-based tool for lipid identification for liquid chromatography tandem mass spectrometry workflows. LipidMatch currently has over 250,000 lipid species spanning 56 lipid types contained in in silico fragmentation libraries. Unique fragmentation libraries, compared to other open source software, include oxidized lipids, bile acids, sphingosines, and previously uncharacterized adducts, including ammoniated cardiolipins. LipidMatch uses rule-based identification. For each lipid type, the user can select which fragments must be observed for identification. Rule-based identification allows for correct annotation of lipids based on the fragments observed, unlike typical identification based solely on spectral similarity scores, where over-reporting structural details that are not conferred by fragmentation data is common. Another unique feature of LipidMatch is ranking lipid identifications for a given feature by the sum of fragment intensities. For each lipid candidate, the intensities of experimental fragments with exact mass matches to expected in silico fragments are summed. The lipid identifications with the greatest summed intensity using this ranking algorithm were comparable to other lipid identification software annotations, MS-DIAL and Greazy. For example, for features with identifications from all 3 software, 92% of LipidMatch identifications by fatty acyl constituents were corroborated by at least one other software in positive mode and 98% in negative ion mode.ConclusionsLipidMatch allows users to annotate lipids across a wide range of high resolution tandem mass spectrometry experiments, including imaging experiments, direct infusion experiments, and experiments employing liquid chromatography. LipidMatch leverages the most extensive in silico fragmentation libraries of freely available software. When integrated into a larger lipidomics workflow, LipidMatch may increase the probability of finding lipid-based biomarkers and determining etiology of disease by covering a greater portion of the lipidome and using annotation which does not over-report biologically relevant structural details of identified lipid molecules.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1744-3) contains supplementary material, which is available to authorized users.
Untargeted omics analyses aim to comprehensively characterize biomolecules within a biological system. Changes in the presence or quantity of these biomolecules can indicate important biological perturbations, such as those caused by disease. With current technological advancements, the entire genome can now be sequenced; however, in the burgeoning fields of lipidomics, only a subset of lipids can be identified. The recent emergence of high resolution tandem mass spectrometry (HR-MS/MS), in combination with ultra-high performance liquid chromatography, has resulted in an increased coverage of the lipidome. Nevertheless, identifications from MS/MS are generally limited by the number of precursors which can be selected for fragmentation during chromatographic elution. Therefore, we developed the software IE-Omics to automate iterative exclusion (IE), where selected precursors using data-dependent topN analyses are excluded in sequential injections. In each sequential injection, unique precursors are fragmented until HR-MS/MS spectra of all ions above a user-defined intensity threshold are acquired. IE-Omics was applied to lipidomic analyses in Red Cross plasma and substantia nigra tissue. Coverage of the lipidome was drastically improved using IE. When applying IE-Omics to Red Cross plasma and substantia nigra lipid extracts in positive ion mode, 69 % and 40 % more molecular identifications were obtained, respectively. In addition, applying IE-Omics to a lipidomics workflow increased the coverage of trace species, including odd-chained and short-chained diacylglycerides and oxidized lipid species. By increasing the coverage of the lipidome, applying IE to a lipidomics workflow increases the probability of finding biomarkers and provides additional information for determining etiology of disease.
Thousands of per-and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and non-target screening with liquid chromatography (LC) high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date no automated open source PFAS data analysis software exists to mine these extensive datasets. We introduce FluoroMatch, which automates file conversion, chromatographic peak picking, blank feature filtering, PFAS annotation based on precursor and fragment masses, and annotation ranking. The software library currently contains ~7,000 PFAS fragmentation patterns based on rules derived from standards and literature and the software This document is the postprint version of an article published in
Alcoholic fatty liver disease (AFLD) is characterized by lipid accumulation and inflammation and can progress to cirrhosis and cancer in the liver. AFLD diagnosis currently relies on histological analysis of liver biopsies. Early detection permits interventions that would prevent progression to cirrhosisor later stages of the disease. Herein, we have conducted the first comprehensive time-course study of lipids using novel state-of-the art lipidomics methods in plasma and liver in the early stages of a mouse model of AFLD, i.e., Lieber-DeCarli diet model. In ethanol-treated mice, changes in liver tissue included up-regulation of triglycerides (TGs) and oxidized TGs and down-regulation of phosphatidylcholine, lysophosphatidylcholine, and 20-22-carbon-containing lipid-mediator precursors. An increase in oxidized TGs preceded histological signs of early AFLD, i.e., steatosis, with these changes observed in both the liver and plasma. The major lipid classes dysregulated by ethanol play important roles in hepatic inflammation, steatosis, and oxidative damage. Conclusion: Alcohol consumption alters the liver lipidome before overt histological markers of early AFLD. This introduces the exciting possibility that specific lipids may serve as earlier biomarkers of AFLD than those currently being used. (Hepatology Communications 2022;6:513-525).F atty liver disease or hepatosteatosis occurs when lipids accumulate in the liver as a result of dysregulated lipid metabolism leading to increased lipogenesis, reduced lipolysis, and lipotoxicity. (1) Lipotoxicity may potentially elicit an inflammatory response that can lead to the progression to cirrhosis and hepatocellular carcinoma. Clinically, fatty liver disease can be divided into alcoholic (AFLD) and nonalcoholic fatty liver disease (NAFLD). Both AFLD and NAFLD are generally indistinguishable using only morphological evidence, other than the distinctions applied by these etiological designations. (2) Although the prevalence of NAFLD worldwide compared to AFLD has been increasing exponentially
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.