. (2015). A twist of nature-the significance of atropisomers in biological systems. Natural Product Reports: a journal of current development in bioorganic chemistry, 32 (11), 1562-1583. A twist of nature-the significance of atropisomers in biological systems AbstractRecently identified natural atropisomeric compounds with potential medicinal applications are presented. The ability of natural receptors to possess differential binding between atropisomers is an important factor when considering active and inactive atropisomeric drugs, and has required the development of new techniques for atropselective synthesis of desired targets. Advances in this field therefore have significant relevance to modern pharmaceutical and medicinal chemistry. The atropisomeric natural products discussed include hibarimicinone, flavomannins, talaromannins, viriditoxin, rugulotrosin A, abyssomicin C, marinopyrroles, dixiamycins, streptorubin B, ustiloxins A-F, haouamine A, bisnicalaterines, and tedarene B, all of which show significant potential as leads in antibiotic, antiviral and anticancer studies. The importance for the development of common practices regarding atropisomer recognition and classification is also emphasized. AbstractRecently identified natural atropisomeric compounds with potential medicinal applications are presented. The ability of natural receptors to possess differential binding between atropisomers is an important factor when considering active and inactive atropisomeric drugs, and has required the development of new techniques for atropselective synthesis of desired targets. Advances in this field therefore have significant relevance to modern pharmaceutical and medicinal chemistry. The atropisomeric natural products discussed include hibarimicinone, flavomannins, talaromannins, viriditoxin, rugulotrosin A, abyssomicin C, marinopyrroles, dixiamycins, streptorubin B, ustiloxins A-F, haouamine A, bisnicalaterines, and tedarene B, all of which show significant potential as leads in antibiotic, antiviral and anticancer studies. The importance for the development of common practices regarding atropisomer recognition and classification is also emphasized.
The base-initiated alkylation of the abundant natural dye indigo 1 with ring-strained electrophiles results in the unprecedented, one-pot synthesis of functionalised dihydropyrazino[1,2-a:4,3-a']diindoles, dihydroepoxy[1,5]oxazocino[5,4-a:3,2-b']diindoles, and dihydrodiazepino[1,2-a:4,3-a']diindoles, resulting from intramolecular ring opening-expansion cyclisation processes of their parent oxiranes and aziridines. Regiochemical and stereochemical aspects of the reactions are reported together with integrated mechanistic proposals. This new indigo cascade chemistry should have broad applicability in the synthesis of chemical architectures, not readily-accessible by other means. The three-step synthesis of the useful synthetic precursor (R)-2-(chloromethyl)-1-tosylaziridine 14 is also described. Initial biological activity investigations into these new 2,2'-dindolyl-based heterocyclic derivatives revealed potent, selective antiplasmodial activity in vitro for several isolated structures, with IC50 values as low as 76.6 nM for (±)-8, while demonstrating low human cell toxicity.
The deprotection of chiral 1,2-bis(tosylamides) to their corresponding 1,2-diamines is mostly unsuccessful under standard conditions. In a new methodology, the use of Mg/MeOH with sufficient steric additions allows the facile synthesis of 1,2-diamines in 78−98% yields. These results are rationalized using density functional theory and the examination of inner and outer-sphere reduction mechanisms.Note pubs.acs.org/joc
The nucleophilic addition of organomagnesium and organolithium species to the cheap and robust natural dye indigo led to desymmetrization of the heterocyclic nucleus via a Grignard addition−dehydration procedure. Twenty-seven diversely functionalized [1H,3′H]-3-substituted 2,2′-diindol-3′-ones were synthesized by this methodology, with several showing submicromolar inhibition and exquisite selectivity against P. falciparum parasites (3D7 and Dd2 strains) in vitro. This work demonstrates the utility of indigo dye as a highly versatile scaffold for the synthesis of structurally diverse, bioactive heterocycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.