Faba bean ( Vicia faba L. ) holds great importance for human and animal nutrition for its high protein content. However, better understanding of its seed protein composition is required in order to develop cultivars that meet market demands for plant proteins with specific quality attributes. In this study, we screened 35 diverse Vicia faba genotypes by employing the one-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis (1D SDS-PAGE) method, and 35 major protein bands obtained from three genotypes with contrasting seed protein profiles were further analyzed by mass spectrometry (MS). Twenty-five of these protein bands (MW range: ∼ 9–107 kDa) had significant (p ≤ 0.05) matches to polypeptides in protein databases. MS analysis showed that most of the analyzed protein bands contained more than one protein type and, in total, over 100 proteins were identified. These included major seed storage proteins such as legumin, vicilin, and convicilin, as well as other protein classes like lipoxygenase, heat shock proteins, sucrose-binding proteins, albumin, and defensin. Furthermore, seed protein extracts were separated by size-exclusion high-performance liquid chromatography (SE-HPLC), and percentages of the major protein classes were determined. On average, legumin and vicilin/convicilin accounted for 50 and 27% of the total protein extract, respectively. However, the proportions of these proteins varied considerably among genotypes, with the ratio of legumin:vicilin/convicilin ranging from 1:1 to 1:3. In addition, there was a significant (p < 0.01) negative correlation between the contents of these major fractions (r = −0.83). This study significantly extends the number of identified Vicia faba seed proteins and reveals new qualitative and quantitative variation in seed protein composition, filling a significant gap in the literature. Moreover, the germplasm and screening methods presented here are expected to contribute in selecting varieties with improved protein content and quality.
Lipopeptide biosurfactants produced by Bacillus sp. were assessed regarding their antimicrobial activity against foodborne pathogenic and food spoilage microorganisms. Both Gram-positive and Gram-negative bacteria were found not to be susceptible to these lipopeptides. However, mycosubtilin and mycosubtilin/surfactin mixtures were very active against the filamentous fungi Paecilomyces variotti and Byssochlamys fulva, with minimum inhibitory concentrations (MICs) of 1–16 mg/L. They were also active against Candida krusei, MIC = 16–64 mg/L. Moreover it was found that the antifungal activity of these lipopeptides was not affected by differences in isoform composition and/or purity. Furthermore their cytotoxicity tested on two different cell lines mimicking ingestion and detoxification was comparable to those of approved food preservatives such as nisin. Overall, for the first time here mycosubtilin and mycosubtilin/surfactin mixtures were found to have high antifungal activity against food relevant fungi at concentrations lower than their toxicity level hence, suggesting their application for extending the shelf-life of products susceptible to these moulds. In addition combining nisin with mycosubtilin or mycosubtiliin/surfactin mixtures proved to be an effective approach to produce antimicrobials with broader spectrum of action.
BACKGROUND: The aim of this study is to separate polyphenols from grape pomace using a surfactant-based separation, colloidal gas aphrons (CGA) and to investigate their inhibitory activity against skin relevant enzymes, collagenase and elastase. Ethanolic (EE) and hot water crude extracts (HWE) were produced first and then the CGA generated using TWEEN20 were applied resulting in polyphenols enriched fractions (CGA-EE and CGA-HWE, ethanol and hot water extracts derived fractions, respectively). RESULTS:Both crude extracts inhibited the enzymes in a dose-dependent manner, however, further extraction by CGA led to fractions with higher inhibitory efficiency against collagenase. Although gallic acid was the main component of the CGA-HWE, others such as kaempferol must have contributed to its potency which was more than six times that of gallic acid. The CGA-EE was found to be about four times more efficient than its crude extract and more than six times more efficient than gallic acid for collagenase inhibition; quercetin was the major polyphenol in this fraction. CONCLUSION: It is evident that ethanol and hot water extraction processes led to different polyphenols composition and thus different inhibitory activity against collagenase and elastase. Further separation with CGA increased the inhibitory potency of both extracts against collagenase. Overall the results here showed the potential for application of CGA fractions from grape extracts in cosmetics.
Pterygoplichthys disjunctivus, locally named the armoured catfish, is a by-catch of tilapia fishing that accounts for up to 80% of total captured fish in the Adolfo Lopez Mateos dam, in Michoacán, México, affecting the economy of its surrounding communities. This invasive fish is discarded by fishermen since native people do not consume it, partly due to its appearance, yet it is rich in protein. The aim of this study was to produce hydrolysates from armoured catfish using food-grade proteases (neutrases HT and PF and alcalase PAL) and investigate the processing conditions (pH and temperature) that lead to a high degree of hydrolysis, antioxidant activity, and Angiotensin I-Converting Enzyme (ACE) Inhibitory activity. No other similar research has been reported on this underutilized fish. The antioxidant activity was measured by three different methods, ABTS, FRAP and ORAC, with relevance to food and biological systems in order to obtain a more comprehensive assessment of the activity. In addition, the main peptide sequences were identified. All enzymes produced hydrolysates with high antioxidant activity. In particular, the protease HT led to the highest antioxidant activity according to the ABTS (174.68 μmol Trolox equivalent/g fish) and FRAP (7.59 mg ascorbic acid equivalent/g fish) methods and almost the same as PAL according to the ORAC method (51.43 μmol Trolox equivalent/g fish). Moreover, maximum activity was obtained at mild pH and temperature (7.5; 50 °C). Interestingly, the ORAC values obtained here were higher than others previously reported for fish hydrolysates and similar to those reported for fruits such as blueberries, apples and oranges. The peptide sequence IEE(E) was present in several peptides in both hydrolysates; this sequence may be partly responsible for the high antioxidant activity, particularly the one based on iron-reducing power. These findings will be relevant to the valorization of other fish/fish muscle discards and could contribute to the production of food supplements and nutraceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.