Diamond particles containing color centers—fluorescent crystallographic defects embedded within the diamond lattice—outperform other classes of fluorophores by providing a combination of unmatched photostability, intriguing coupled magneto-optical properties, intrinsic biocompatibility, and outstanding mechanical and chemical robustness. This exceptional combination of properties positions fluorescent diamond particles as unique fluorophores with emerging applications in a variety of fields, including bioimaging, ultrasensitive metrology at the nanoscale, fluorescent tags in industrial applications, and even potentially as magnetic resonance imaging contrast agents. However, production of fluorescent nanodiamond (FND) is nontrivial, since it requires irradiation with high-energy particles to displace carbon atoms and create vacancies—a primary constituent in the majority color centers. In this review, centrally focused on material developments, major steps of FND production are discussed with emphasis on current challenges in the field and possible solutions. The authors demonstrate how the combination of fluorescent spectroscopy and electron paramagnetic resonance provides valuable insight into the types of radiation-induced defects formed and their evolution upon thermal annealing, thereby guiding FND performance optimization. A recent breakthrough process allowing for production of fluorescent diamond particles with vibrant blue, green, and red fluorescence is also discussed. Finally, the authors conclude with demonstrations of a few FND applications in the life science arena and in industry.
Nanodiamonds exhibit exceptional
colloidal properties in aqueous
media that lead to a wide range of applications in nanomedicine and
other fields. Nevertheless, the role of surface chemistry on the hydration
of nanodiamonds remains poorly understood. Here, we probed the water
hydrogen bond network in aqueous dispersions of nanodiamonds by infrared,
Raman, and X-ray absorption spectroscopies applied in situ in aqueous
environment. Aqueous dispersions of nanodiamonds with hydrogenated,
carboxylated, hydroxylated, and polyfunctional surface terminations
were compared. A different hydrogen bond network was found in hydrogenated
nanodiamonds dispersions compared to dispersions of nanodiamonds with
other surface terminations. Although no hydrogen bonds are formed
between water and hydrogenated surface groups, a long-range disruption
of the water hydrogen bond network is evidenced in hydrogenated nanodiamonds
dispersion. We propose that this unusual hydration structure results
from electron accumulation at the diamond–water interface.
The field of fluorescent nanodiamonds (FNDs) has advanced greatly over the past few years. Though historically limited primarily to red fluorescence, the wavelengths available for nanodiamonds have increased due to continuous technical advancement. This review summarizes the strides made in the This article is protected by copyright. All rights reserved. synthesis, functionalization, and application of FNDs to bioimaging. Highlights range from superresolution microscopy, through cellular and whole animal imaging, up through constantly emerging fields including sensing and hyperpolarized magnetic resonance imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.