The gravitational waves measured at LIGO are presumed here to come from merging primordial black holes. We ask how these primordial black holes could arise through inflationary models while not conflicting with current experiments. Among the approaches that work, we investigate the opportunity for corroboration through experimental probes of gravitational waves at pulsar timing arrays. We provide examples of theories that are already ruled out, theories that will soon be probed, and theories that will not be tested in the foreseeable future. The models that are most strongly constrained are those with a relatively broad primordial power spectrum.
We show that primordial (nearly) extremal black holes with a wide range of masses from the Planck scale to around 10 9 g could be cosmologically stable and explain dark matter, given a dark electromagnetism and a heavy dark electron. For individual black holes, Hawking radiation and Schwinger discharge processes are suppressed by near-extremality and the heaviness of the dark electron, respectively. In contrast, the merger events of binary systems provide an opportunity to directly observe Hawking radiation. Because the merger products are not extremal, they rapidly evaporate and produce transient high-energy neutrino and gamma ray signals that can be observed at telescopes like IceCube and HAWC. The relationship between the near-extremal black hole and dark electron masses could also shed light on the weak gravity conjecture.
Magnetically charged black holes (MBHs) are interesting solutions of the Standard Model and general relativity. They may possess a “hairy” electroweak-symmetric corona outside the event horizon, which speeds up their Hawking radiation and leads them to become nearly extremal on short timescales. Their masses could range from the Planck scale up to the Earth mass. We study various methods to search for primordially produced MBHs and estimate the upper limits on their abundance. We revisit the Parker bound on magnetic monopoles and show that it can be extended by several orders of magnitude using the large-scale coherent magnetic fields in Andromeda. This sets a mass-independent constraint that MBHs have an abundance less than 4 × 10−4 times that of dark matter. MBHs can also be captured in astrophysical systems like the Sun, the Earth, or neutron stars. There, they can become non-extremal either from merging with an oppositely charged MBH or absorbing nucleons. The resulting Hawking radiation can be detected as neutri- nos, photons, or heat. High-energy neutrino searches in particular can set a stronger bound than the Parker bound for some MBH masses, down to an abundance 10−7 of dark matter.
Direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter-a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Z boson, but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z-mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches. arXiv:1611.05048v2 [hep-ph]
Primordial black holes (PBHs) with a mass from 10 −16 to 10 −11 M may comprise 100% of dark matter. Due to a combination of wave and finite source size effects, the traditional microlensing of stars does not probe this mass range. In this paper, we point out that X-ray pulsars with higher photon energies and smaller source sizes are good candidate sources for microlensing for this mass window. Among the existing X-ray pulsars, the Small Magellanic Cloud (SMC) X-1 source is found to be the best candidate because of its apparent brightness and long distance from Earth. We have analyzed the existing observation data of SMC X-1 by the RXTE telescope (around 10 days) and found that PBH as 100% of dark matter is close to but not yet excluded. Future longer observation of this source by X-ray telescopes with larger effective areas such as AstroSat, Athena, Lynx, and eXTP can potentially close the last mass window where PBHs can make up all of dark matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.