Precise manipulation of water is a key step in numerous natural and synthetic processes. Here, a new flexible and transparent hierarchical structure is determined that allows ultra‐dexterous manipulation and lossless transfer of water droplets. A 3D nanomesh is fabricated in one step by scalable electrospinning of low‐cost polystyrene solutions. Optimal structures are composed of a mesh of dense nanofiber layers vertically separated by isolated mesoporous microbeads. This results in a highly adhesive superhydrophobic wetting that perfectly mimics rose petal‐like structures. Structural–functional correlations are obtained over all key process parameters enabling robust tailoring of the wetting properties from hydrophilic to lotus‐like Cassie‐Baxter and rose‐like Cassie‐impregnating states. A mechanistic model of the droplet adhesion and release dynamics is obtained alongside the first demonstration of a mechanically induced transfer of microdroplets between two superhydrophobic coatings. This low‐temperature reaction‐free material structure demonstrates a facile means to fabricate impenetrable residue‐less rose petal‐like surfaces with superhydrophobic contact angles of 152 ± 2° and effective adhesion strength of 113 ± 20 μN. This is a significant step toward parallel, multistep droplet manipulation with applications ranging from flexible on‐paper devices to microfluidics and portable/wearable biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.